Question #199720

Given series:

nn

Sn=ΣSn = Σ  ((k+1)2k2)((k+1)^2 - k^2)

k=1k=1


which of the following statements are true?


  1. it is a telescoping series
  2. it sums to n(n+1)
  3. it sums to n(n+2)
  4. it sums to n(n+1) - n
  5. it sums to the same value as:

nn

ΣΣ (2k+1)(2k + 1)

 k=1k = 1


6) it sums to the same value as:


n+1n + 1

ΣΣ (2k)(2k)

k=2k = 2



1
Expert's answer
2021-05-31T18:21:55-0400

1.false

A telescoping series is a series whose general term can be written as the difference of two consecutive terms of a sequence:

tn=anan+1t_n=a_n-a_{n+1}


2.false

Sn=((k+1)2k2)=(221)+(3222)+(4232)+...+((n+1)2n2)=S_n=\sum((k+1)^2-k^2)=(2^2-1)+(3^2-2^2)+(4^2-3^2)+...+((n+1)^2-n^2)=

=(n+1)21=n2+2n=n(n+2)=(n+1)^2-1=n^2+2n=n(n+2)


3.true


4.false


5.true

Sn=((k+1)2k2)=(k2+2k+1k2)=(2k+1)S_n=\sum((k+1)^2-k^2)=\sum(k^2+2k+1-k^2)=\sum(2k+1)


6.false

2n+12k=4+8+10+...+2(n+1)=n(4+2n+2)/2=n(n+3)\displaystyle{\sum_2^{n+1}2k}=4+8+10+...+2(n+1)=n(4+2n+2)/2=n(n+3)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS