Differentiate the following functions with respect to x (i) sinh x tanh x (ii) Z x √ x sin t t dt.
(i) sinhxtanhx\sinh x\tanh xsinhxtanhx
differentiating with respect to x
=tanhx(coshx)+sinhx(sech2x)=\tanh x(\cosh x)+\sinh x(sec h^2x)=tanhx(coshx)+sinhx(sech2x)
=sinhx+sinhx(sech2x)=\sinh x+\sinh x(sech^2 x)=sinhx+sinhx(sech2x)
(ii) Zxxsint tdtZx\sqrt{x}\sin t \space tdtZxxsint tdt
treating Z and t as constant and differentiating with respect to x
=32x32−1Zsint tdt=\dfrac{3}{2}x^{\frac{3}{2}-1}Z\sin t\space tdt=23x23−1Zsint tdt
=32x12Zsint tdt=\dfrac{3}{2}x^{\frac{1}{2}}Z\sin t\space tdt=23x21Zsint tdt
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment