Question #201072

If ∅ = 𝟐𝒙𝒚𝒛 𝟐 , 𝑭 = 𝒙𝒚𝒊 − 𝒚𝒋 + 𝒙 𝟐𝒌 𝐚𝐧𝐝 𝑪 𝐢𝐬 𝐭𝐡𝐞 𝐜𝐮𝐫𝐯𝐞 𝒙 = 𝒕 𝟐 , 𝒚 = 𝟐𝒕, 𝒛 = 𝒕 𝟑 𝐟𝐫𝐨𝐦 𝒕 = 𝟎 𝒕𝒐 𝒕 = 𝟏, 𝐞𝐯𝐚𝐥𝐮𝐚𝐭𝐞 𝐭𝐡𝐞 𝐥𝐢𝐧𝐞 𝐢𝐧𝐭𝐞𝐠𝐫𝐚𝐥𝐬 a. ∫ ∅𝒅𝒓 𝑪 , b. ∫ 𝑭 𝑿 𝒅𝒓.


1
Expert's answer
2021-07-01T17:46:00-0400

ϕ=2xyz2\phi=2xyz^{2}


F=xyF=xyi^yj^+x2k^\hat{i}-y\hat{j}+x^{2}\hat{k}


Curve C is given by x=t2,y=2t,z=t3x=t^{2},y=2t,z=t^{3} from t=0 to t=1 .


We have to evaluate line integeral -


a)cϕa)\int_{c}\phi drdr


dr=dxi^+dyj^+dzk^d\vec{r}=dx\hat{i}+dy\hat{j}+dz\hat{k}


ϕ\phi =2xyz22xyz^{2} , now making this variable in terms of t , we have to put the given x,y and zx,y\ and \ z so that we can get a function in t .


x=t2x=t^{2} ,y=2t,y=2t ,z=t3,z=t^{3}


ϕ=\phi= 22 t2×2t×(t3)2t^{2}\times2t\times(t^{3})^{2}


ϕ=4t9\phi=4t^{9}


dx=2tdx=2tdtdt ,, dy=2dtdy=2dt ,dz=3t2dt,dz=3t^{2}dt


dr^=(2ti^+2j^+3t2k^)dtd\hat{r}=(2t\hat{i}+2\hat{j}+3t^{2}\hat{k})dt


=cϕ=\int_c\phi dr^=01(d\hat{r}=\int_{0}^{1}( 2ti^+2j^+3t2k^)2t\hat{i}+2\hat{j}+3t^{2}\hat{k}) .4t9dt.4t^{9}dt


=01(8t10i^+8t9j^+12t11k^)dt=\int_0^1(8t^{10}\hat{i}+8t^{9}\hat{j}+12t^{11}\hat{k})dt


=811i^+810j^+t12k^=\dfrac{8}{11}\hat{i}+\dfrac{8}{10}\hat{j}+t^{12}\hat{k}



B)B) F.Xdr\int F.Xdr


dr^=dxi^+dyj^+dzk^d\hat{r}=dx\hat{i}+dy\hat{j}+dz\hat{k}


dr^=(2ti^+2j^d\hat{r}=(2t\hat{i}+2\hat{j} +3t2k^)dt+3t^{2}\hat{k})dt


F=xyi^yj^+x2k^F=xy\hat{i}-y\hat{j}+x^{2}\hat{k}


now putting the value of x,y,zx, y ,z in above equation we get -


F=F= 2t3i^2tj^+t4k^2t^{3}\hat{i}-2t\hat{j}+t^{4}\hat{k}


=01(2t3i^2tj^+t4k^).(2ti^+2j^+3t2k^)dt=\int_{0}^{1}(2t^{3}\hat{i}-2t\hat{j}+t^{4}\hat{k}).(2t\hat{i}+2\hat{j}+3t^{2}\hat{k})dt


=01(4t44t+3t6)dt=\int_{0}^{1}(4t^{4}-4t+3t^{6})dt


=452+37=\dfrac{4}{5}-2+\dfrac{3}{7}


=2870+1535=2735=\dfrac{28-70+15}{35}=\dfrac{-27}{35}





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS