ϕ=2xyz2
F=xyi^−yj^+x2k^
Curve C is given by x=t2,y=2t,z=t3 from t=0 to t=1 .
We have to evaluate line integeral -
a)∫cϕ dr
dr=dxi^+dyj^+dzk^
ϕ =2xyz2 , now making this variable in terms of t , we have to put the given x,y and z so that we can get a function in t .
x=t2 ,y=2t ,z=t3
ϕ= 2 t2×2t×(t3)2
ϕ=4t9
dx=2tdt , dy=2dt ,dz=3t2dt
dr^=(2ti^+2j^+3t2k^)dt
=∫cϕ dr^=∫01( 2ti^+2j^+3t2k^) .4t9dt
=∫01(8t10i^+8t9j^+12t11k^)dt
=118i^+108j^+t12k^
B) ∫F.Xdr
dr^=dxi^+dyj^+dzk^
dr^=(2ti^+2j^ +3t2k^)dt
F=xyi^−yj^+x2k^
now putting the value of x,y,z in above equation we get -
F= 2t3i^−2tj^+t4k^
=∫01(2t3i^−2tj^+t4k^).(2ti^+2j^+3t2k^)dt
=∫01(4t4−4t+3t6)dt
=54−2+73
=3528−70+15=35−27
Comments