ϕ = 2 x y z 2 \phi=2xyz^{2} ϕ = 2 x y z 2
F = x y F=xy F = x y i ^ − y j ^ + x 2 k ^ \hat{i}-y\hat{j}+x^{2}\hat{k} i ^ − y j ^ + x 2 k ^
Curve C is given by x = t 2 , y = 2 t , z = t 3 x=t^{2},y=2t,z=t^{3} x = t 2 , y = 2 t , z = t 3 from t=0 to t=1 .
We have to evaluate line integeral -
a ) ∫ c ϕ a)\int_{c}\phi a ) ∫ c ϕ d r dr d r
d r ⃗ = d x i ^ + d y j ^ + d z k ^ d\vec{r}=dx\hat{i}+dy\hat{j}+dz\hat{k} d r = d x i ^ + d y j ^ + d z k ^
ϕ \phi ϕ =2 x y z 2 2xyz^{2} 2 x y z 2 , now making this variable in terms of t , we have to put the given x , y a n d z x,y\ and \ z x , y an d z so that we can get a function in t .
x = t 2 x=t^{2} x = t 2 , y = 2 t ,y=2t , y = 2 t , z = t 3 ,z=t^{3} , z = t 3
ϕ = \phi= ϕ = 2 2 2 t 2 × 2 t × ( t 3 ) 2 t^{2}\times2t\times(t^{3})^{2} t 2 × 2 t × ( t 3 ) 2
ϕ = 4 t 9 \phi=4t^{9} ϕ = 4 t 9
d x = 2 t dx=2t d x = 2 t d t dt d t , , , d y = 2 d t dy=2dt d y = 2 d t , d z = 3 t 2 d t ,dz=3t^{2}dt , d z = 3 t 2 d t
d r ^ = ( 2 t i ^ + 2 j ^ + 3 t 2 k ^ ) d t d\hat{r}=(2t\hat{i}+2\hat{j}+3t^{2}\hat{k})dt d r ^ = ( 2 t i ^ + 2 j ^ + 3 t 2 k ^ ) d t
= ∫ c ϕ =\int_c\phi = ∫ c ϕ d r ^ = ∫ 0 1 ( d\hat{r}=\int_{0}^{1}( d r ^ = ∫ 0 1 ( 2 t i ^ + 2 j ^ + 3 t 2 k ^ ) 2t\hat{i}+2\hat{j}+3t^{2}\hat{k}) 2 t i ^ + 2 j ^ + 3 t 2 k ^ ) . 4 t 9 d t .4t^{9}dt .4 t 9 d t
= ∫ 0 1 ( 8 t 10 i ^ + 8 t 9 j ^ + 12 t 11 k ^ ) d t =\int_0^1(8t^{10}\hat{i}+8t^{9}\hat{j}+12t^{11}\hat{k})dt = ∫ 0 1 ( 8 t 10 i ^ + 8 t 9 j ^ + 12 t 11 k ^ ) d t
= 8 11 i ^ + 8 10 j ^ + t 12 k ^ =\dfrac{8}{11}\hat{i}+\dfrac{8}{10}\hat{j}+t^{12}\hat{k} = 11 8 i ^ + 10 8 j ^ + t 12 k ^
B ) B) B ) ∫ F . X d r \int F.Xdr ∫ F . X d r
d r ^ = d x i ^ + d y j ^ + d z k ^ d\hat{r}=dx\hat{i}+dy\hat{j}+dz\hat{k} d r ^ = d x i ^ + d y j ^ + d z k ^
d r ^ = ( 2 t i ^ + 2 j ^ d\hat{r}=(2t\hat{i}+2\hat{j} d r ^ = ( 2 t i ^ + 2 j ^ + 3 t 2 k ^ ) d t +3t^{2}\hat{k})dt + 3 t 2 k ^ ) d t
F = x y i ^ − y j ^ + x 2 k ^ F=xy\hat{i}-y\hat{j}+x^{2}\hat{k} F = x y i ^ − y j ^ + x 2 k ^
now putting the value of x , y , z x, y ,z x , y , z in above equation we get -
F = F= F = 2 t 3 i ^ − 2 t j ^ + t 4 k ^ 2t^{3}\hat{i}-2t\hat{j}+t^{4}\hat{k} 2 t 3 i ^ − 2 t j ^ + t 4 k ^
= ∫ 0 1 ( 2 t 3 i ^ − 2 t j ^ + t 4 k ^ ) . ( 2 t i ^ + 2 j ^ + 3 t 2 k ^ ) d t =\int_{0}^{1}(2t^{3}\hat{i}-2t\hat{j}+t^{4}\hat{k}).(2t\hat{i}+2\hat{j}+3t^{2}\hat{k})dt = ∫ 0 1 ( 2 t 3 i ^ − 2 t j ^ + t 4 k ^ ) . ( 2 t i ^ + 2 j ^ + 3 t 2 k ^ ) d t
= ∫ 0 1 ( 4 t 4 − 4 t + 3 t 6 ) d t =\int_{0}^{1}(4t^{4}-4t+3t^{6})dt = ∫ 0 1 ( 4 t 4 − 4 t + 3 t 6 ) d t
= 4 5 − 2 + 3 7 =\dfrac{4}{5}-2+\dfrac{3}{7} = 5 4 − 2 + 7 3
= 28 − 70 + 15 35 = − 27 35 =\dfrac{28-70+15}{35}=\dfrac{-27}{35} = 35 28 − 70 + 15 = 35 − 27
Comments