Answer to Question #201072 in Calculus for Rocky Valmores

Question #201072

If ∅ = 𝟐𝒙𝒚𝒛 𝟐 , 𝑭 = 𝒙𝒚𝒊 − 𝒚𝒋 + 𝒙 𝟐𝒌 𝐚𝐧𝐝 𝑪 𝐢𝐬 𝐭𝐡𝐞 𝐜𝐮𝐫𝐯𝐞 𝒙 = 𝒕 𝟐 , 𝒚 = 𝟐𝒕, 𝒛 = 𝒕 𝟑 𝐟𝐫𝐨𝐦 𝒕 = 𝟎 𝒕𝒐 𝒕 = 𝟏, 𝐞𝐯𝐚𝐥𝐮𝐚𝐭𝐞 𝐭𝐡𝐞 𝐥𝐢𝐧𝐞 𝐢𝐧𝐭𝐞𝐠𝐫𝐚𝐥𝐬 a. ∫ ∅𝒅𝒓 𝑪 , b. ∫ 𝑭 𝑿 𝒅𝒓.


1
Expert's answer
2021-07-01T17:46:00-0400

"\\phi=2xyz^{2}"


"F=xy""\\hat{i}-y\\hat{j}+x^{2}\\hat{k}"


Curve C is given by "x=t^{2},y=2t,z=t^{3}" from t=0 to t=1 .


We have to evaluate line integeral -


"a)\\int_{c}\\phi" "dr"


"d\\vec{r}=dx\\hat{i}+dy\\hat{j}+dz\\hat{k}"


"\\phi" ="2xyz^{2}" , now making this variable in terms of t , we have to put the given "x,y\\ and \\ z" so that we can get a function in t .


"x=t^{2}" ",y=2t" ",z=t^{3}"


"\\phi=" "2" "t^{2}\\times2t\\times(t^{3})^{2}"


"\\phi=4t^{9}"


"dx=2t""dt" "," "dy=2dt" ",dz=3t^{2}dt"


"d\\hat{r}=(2t\\hat{i}+2\\hat{j}+3t^{2}\\hat{k})dt"


"=\\int_c\\phi" "d\\hat{r}=\\int_{0}^{1}(" "2t\\hat{i}+2\\hat{j}+3t^{2}\\hat{k})" ".4t^{9}dt"


"=\\int_0^1(8t^{10}\\hat{i}+8t^{9}\\hat{j}+12t^{11}\\hat{k})dt"


"=\\dfrac{8}{11}\\hat{i}+\\dfrac{8}{10}\\hat{j}+t^{12}\\hat{k}"



"B)" "\\int F.Xdr"


"d\\hat{r}=dx\\hat{i}+dy\\hat{j}+dz\\hat{k}"


"d\\hat{r}=(2t\\hat{i}+2\\hat{j}" "+3t^{2}\\hat{k})dt"


"F=xy\\hat{i}-y\\hat{j}+x^{2}\\hat{k}"


now putting the value of "x, y ,z" in above equation we get -


"F=" "2t^{3}\\hat{i}-2t\\hat{j}+t^{4}\\hat{k}"


"=\\int_{0}^{1}(2t^{3}\\hat{i}-2t\\hat{j}+t^{4}\\hat{k}).(2t\\hat{i}+2\\hat{j}+3t^{2}\\hat{k})dt"


"=\\int_{0}^{1}(4t^{4}-4t+3t^{6})dt"


"=\\dfrac{4}{5}-2+\\dfrac{3}{7}"


"=\\dfrac{28-70+15}{35}=\\dfrac{-27}{35}"





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment