If 𝑭 = 𝟑𝒙𝒚𝒊 − 𝒚 𝟐 𝒋 evaluate ∫ 𝑭 ∙ 𝒅𝒓 where C is the curve in the xy plane, 𝒚 = 𝟐𝒙 𝟐 , from (0,0) to (1,2)
Given F⃗=3xyi⃗−y2j⃗\vec F=3xy\vec i-y^2\vec jF=3xyi−y2j
r⃗=xi⃗+yj⃗=>dr⃗=dxi⃗+dyj⃗\vec r=x\vec i+y\vec j=>\vec {dr}=dx\vec i+dy\vec jr=xi+yj=>dr=dxi+dyj
CCC is the part of the curve y=2x2y=2x^2y=2x2 from(0,0)(0, 0)(0,0) to (1,2).(1, 2).(1,2).
x(t)=t,y(t)=2t2,t∈[0,1]x(t)=t, y(t)=2t^2, t\in[0, 1]x(t)=t,y(t)=2t2,t∈[0,1]
dx=dt,dy=4tdtdx=dt, dy=4tdtdx=dt,dy=4tdt
Then
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments