Given F ⃗ = 3 x y i ⃗ − y 2 j ⃗ \vec F=3xy\vec i-y^2\vec j F = 3 x y i − y 2 j
r ⃗ = x i ⃗ + y j ⃗ = > d r ⃗ = d x i ⃗ + d y j ⃗ \vec r=x\vec i+y\vec j=>\vec {dr}=dx\vec i+dy\vec j r = x i + y j => d r = d x i + d y j
F ⋅ d ⃗ r = 3 x y d x − y 2 d y F\cdot \vec dr=3xydx-y^2dy F ⋅ d r = 3 x y d x − y 2 d y C C C is the part of the curve y = 2 x 2 y=2x^2 y = 2 x 2 from( 0 , 0 ) (0, 0) ( 0 , 0 ) to ( 1 , 2 ) . (1, 2). ( 1 , 2 ) .
x ( t ) = t , y ( t ) = 2 t 2 , t ∈ [ 0 , 1 ] x(t)=t, y(t)=2t^2, t\in[0, 1] x ( t ) = t , y ( t ) = 2 t 2 , t ∈ [ 0 , 1 ]
d x = d t , d y = 4 t d t dx=dt, dy=4tdt d x = d t , d y = 4 t d t
Then
∫ C F ⃗ ⋅ d ⃗ r = ∫ 0 1 ( 3 t ( 2 t 2 ) − ( 2 t 2 ) 2 ( 4 t ) ) d t \int_{C}\vec F\cdot \vec dr=\displaystyle\int_{0}^{1}(3t(2t^2)-(2t^2)^2(4t))dt ∫ C F ⋅ d r = ∫ 0 1 ( 3 t ( 2 t 2 ) − ( 2 t 2 ) 2 ( 4 t )) d t
= ∫ 0 1 ( 6 t 3 − 16 t 5 ) d t = [ 3 t 4 2 − 8 t 6 3 ] 1 0 =\displaystyle\int_{0}^{1}(6t^3-16t^5)dt=\big[\dfrac{3t^4}{2}-\dfrac{8t^6}{3}\big]\begin{matrix}
1 \\
0
\end{matrix} = ∫ 0 1 ( 6 t 3 − 16 t 5 ) d t = [ 2 3 t 4 − 3 8 t 6 ] 1 0
= − 7 6 =-\dfrac{7}{6} = − 6 7
Comments