If π = ππππ β π π π evaluate β« π β π π where C is the curve in the xy plane, π = ππ π , from (0,0) to (1,2)
Given "\\vec F=3xy\\vec i-y^2\\vec j"
"\\vec r=x\\vec i+y\\vec j=>\\vec {dr}=dx\\vec i+dy\\vec j"
"C" is the part of the curve "y=2x^2" from"(0, 0)" to "(1, 2)."
"x(t)=t, y(t)=2t^2, t\\in[0, 1]"
"dx=dt, dy=4tdt"
Then
"=\\displaystyle\\int_{0}^{1}(6t^3-16t^5)dt=\\big[\\dfrac{3t^4}{2}-\\dfrac{8t^6}{3}\\big]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}"
"=-\\dfrac{7}{6}"
Comments
Leave a comment