Question #201070

If 𝑭 = 𝟑𝒙𝒚𝒊 − 𝒚 𝟐 𝒋 evaluate ∫ 𝑭 ∙ 𝒅𝒓 where C is the curve in the xy plane, 𝒚 = 𝟐𝒙 𝟐 , from (0,0) to (1,2)


1
Expert's answer
2021-06-02T11:54:43-0400

Given F=3xyiy2j\vec F=3xy\vec i-y^2\vec j

r=xi+yj=>dr=dxi+dyj\vec r=x\vec i+y\vec j=>\vec {dr}=dx\vec i+dy\vec j


Fdr=3xydxy2dyF\cdot \vec dr=3xydx-y^2dy

CC is the part of the curve y=2x2y=2x^2 from(0,0)(0, 0) to (1,2).(1, 2).


x(t)=t,y(t)=2t2,t[0,1]x(t)=t, y(t)=2t^2, t\in[0, 1]

dx=dt,dy=4tdtdx=dt, dy=4tdt


Then


CFdr=01(3t(2t2)(2t2)2(4t))dt\int_{C}\vec F\cdot \vec dr=\displaystyle\int_{0}^{1}(3t(2t^2)-(2t^2)^2(4t))dt

=01(6t316t5)dt=[3t428t63]10=\displaystyle\int_{0}^{1}(6t^3-16t^5)dt=\big[\dfrac{3t^4}{2}-\dfrac{8t^6}{3}\big]\begin{matrix} 1 \\ 0 \end{matrix}

=76=-\dfrac{7}{6}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS