Question #201076

If 𝑭 = 𝟔𝒙𝒛𝒊 − 𝟐𝒚 𝟐 𝒋 + 𝒚𝒛𝒌, evaluate ∬ 𝑭 ∙ 𝒏𝒅𝑺 𝑺 where S is the surface of the cube bounded by 𝒙 = 𝟎, 𝒙 = 𝟏, 𝒚 = 𝟎, 𝒚 = 𝟏, 𝒛 = 𝟎, 𝒛 = 𝟏


1
Expert's answer
2021-06-03T17:01:14-0400

Use the Divergence Theorem


SFn ds=EdivF(x,y,z)dV\int\int_S\vec F\cdot\vec n\ ds=\int\int\int_E\text{div}\vec F(x, y, z)dV

divF(x,y,z)=F\text{div}\vec F(x, y, z)=\nabla\cdot \vec F

=x(6xz)+y(2y2)+z(yz)=\dfrac{\partial}{\partial x}(6xz)+\dfrac{\partial}{\partial y}(-2y^2)+\dfrac{\partial}{\partial z}(yz)

=6z4y+y=6z3y=6z-4y+y=6z-3y

Then by the Divergenve Theorem we have


SFn ds=EdivF(x,y,z)dV\int\int_S\vec F\cdot\vec n\ ds=\int\int\int_E\text{div}\vec F(x, y, z)dV

=010101(6z3y)dzdydx=\displaystyle\int_{0}^{1}\displaystyle\int_{0}^{1}\displaystyle\int_{0}^{1}(6z-3y)dzdydx

=0101[3z23yz]10dydx=\displaystyle\int_{0}^{1}\displaystyle\int_{0}^{1}\big[3z^2-3yz\big]\begin{matrix} 1 \\ 0 \end{matrix}dydx

=30101(1y)10dydx=3\displaystyle\int_{0}^{1}\displaystyle\int_{0}^{1}(1-y)\begin{matrix} 1 \\ 0 \end{matrix}dydx

=301[yy22]10dx=3\displaystyle\int_{0}^{1}\big[y-\dfrac{y^2}{2}\big]\begin{matrix} 1 \\ 0 \end{matrix}dx

=3201dx=\dfrac{3}{2}\displaystyle\int_{0}^{1}dx

=32[x]10=\dfrac{3}{2}[x]\begin{matrix} 1 \\ 0 \end{matrix}

=32=\dfrac{3}{2}

S(6xzi2y2j+yzk)n ds=32\int\int_S(6xz\vec i-2y^2\vec j+yz\vec k)\cdot\vec n\ ds=\dfrac{3}{2}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS