If π = ππππ β ππ π π + πππ, evaluate β¬ π β ππ πΊ πΊ where S is the surface of the cube bounded by π = π, π = π, π = π, π = π, π = π, π = π
Use the Divergence Theorem
"\\text{div}\\vec F(x, y, z)=\\nabla\\cdot \\vec F"
"=\\dfrac{\\partial}{\\partial x}(6xz)+\\dfrac{\\partial}{\\partial y}(-2y^2)+\\dfrac{\\partial}{\\partial z}(yz)"
"=6z-4y+y=6z-3y"
Then by the Divergenve Theorem we have
"=\\displaystyle\\int_{0}^{1}\\displaystyle\\int_{0}^{1}\\displaystyle\\int_{0}^{1}(6z-3y)dzdydx"
"=\\displaystyle\\int_{0}^{1}\\displaystyle\\int_{0}^{1}\\big[3z^2-3yz\\big]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}dydx"
"=3\\displaystyle\\int_{0}^{1}\\displaystyle\\int_{0}^{1}(1-y)\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}dydx"
"=3\\displaystyle\\int_{0}^{1}\\big[y-\\dfrac{y^2}{2}\\big]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}dx"
"=\\dfrac{3}{2}\\displaystyle\\int_{0}^{1}dx"
"=\\dfrac{3}{2}[x]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}"
"=\\dfrac{3}{2}"
"\\int\\int_S(6xz\\vec i-2y^2\\vec j+yz\\vec k)\\cdot\\vec n\\ ds=\\dfrac{3}{2}"
Comments
Leave a comment