Answer to Question #201438 in Calculus for raf

Question #201438

A company's profit function, in dollars, is given by P(x)= -0.3x^2+56.16x-638 where x is the number of items sold. in addition, the company has a marginal revenue function of MR(x)= -0.6x+76.16. determine the total cost for the company to produce 10 items .


1
Expert's answer
2021-06-02T16:50:36-0400

since, profit=revenue-cost

This implies,

cost=revenue-profit

Finding revenue function from the given marginal revenue function,

R(x)=MR(x)dx=(0.6x+76.16)dx=0.3x2+76.16x+cWhen items is zero i.e., x=0,thenR(0)=0    c=0.R(x)=0.3x2+76.16xR(x)=\int MR(x)dx=\int (-0.6x+76.16)dx= -0.3x^2+76.16x+c\newline \text{When items is zero i.e., }x=0, \newline then R(0)=0\implies c=0.\newline R(x)=-0.3x^2+76.16x

Therefore,

C(x)=R(x)P(x)=(0.3x2+76.16x)+(0.3x2+56.16x638)=0.3x2+132.32x638C(10)=0.3(10)2+132.32(10)638=655.2tuhs, total cost for the company to produce 10 items is 655.2.C(x)=R(x)-P(x)= (-0.3x^2+76.16x)+(-0.3x^2+56.16x-638)=-0.3x^2+132.32x-638\newline C(10)=-0.3(10)^2+132.32(10)-638 =655.2\newline \text{tuhs, total cost for the company to produce 10 items is 655.2.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment