For what values of a and b is
g(x)={ax+2b, x<=0
x2+3a-b, 0<x<=2
3x-5, x>2}
continuous at every x?
if g(x) is continuous at every x then
limx→0−0g(x)=limx→0+0g(x)⇒a⋅0+2b=02+3a−b\mathop {\lim }\limits_{x \to 0 - 0} g(x) = \mathop {\lim }\limits_{x \to 0 + 0} g(x) \Rightarrow a \cdot 0 + 2b = {0^2} + 3a - bx→0−0limg(x)=x→0+0limg(x)⇒a⋅0+2b=02+3a−b
limx→2−0g(x)=limx→2+0g(x)⇒22+3a−b=3⋅2−5\mathop {\lim }\limits_{x \to 2 - 0} g(x) = \mathop {\lim }\limits_{x \to 2 + 0} g(x) \Rightarrow {2^2} + 3a - b = 3 \cdot 2 - 5x→2−0limg(x)=x→2+0limg(x)⇒22+3a−b=3⋅2−5
We have a system of equations:
{2b=3a−b4+3a−b=1\left\{ \begin{matrix} 2b = 3a - b\\ 4 + 3a - b = 1 \end{matrix} \right.{2b=3a−b4+3a−b=1
a=b=−32a = b = - \frac{3}{2}a=b=−23
Answer: a=b=−32a = b = - \frac{3}{2}a=b=−23
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments