For what values of a and b is
g(x)={ax+2b, x<=0
x2+3a-b, 0<x<=2
3x-5, x>2}
continuous at every x?
if g(x) is continuous at every x then
"\\mathop {\\lim }\\limits_{x \\to 0 - 0} g(x) = \\mathop {\\lim }\\limits_{x \\to 0 + 0} g(x) \\Rightarrow a \\cdot 0 + 2b = {0^2} + 3a - b"
"\\mathop {\\lim }\\limits_{x \\to 2 - 0} g(x) = \\mathop {\\lim }\\limits_{x \\to 2 + 0} g(x) \\Rightarrow {2^2} + 3a - b = 3 \\cdot 2 - 5"
We have a system of equations:
"\\left\\{ \\begin{matrix}\n2b = 3a - b\\\\\n4 + 3a - b = 1\n\\end{matrix} \\right."
"a = b = - \\frac{3}{2}"
Answer: "a = b = - \\frac{3}{2}"
Comments
Leave a comment