1. Determine the first order partial derivative of the following functions:
a. z = In (x + t^2)
b. F(x,y,z) = xy^2 e^-xz
2. Clairaut's Theorwm holds that Uxy = Uyx , show that the following equations obey Clairaut's Theorem:
a. U = In( x+2y)
b. U = e^xy sin y
3. Laplaces equation holds that Uxx + Uyy= 0, verify that the second derivative of the following equations are Laplace's equations:
a. U = In√x^2 + y^2
b. U = x^2 - y^2
1.
a.
"\\dfrac{\\partial z}{\\partial x}=\\dfrac{1}{x+t^2}""\\dfrac{\\partial z}{\\partial t}=\\dfrac{2t}{x+t^2}"
b.
2.
a.
"\\dfrac{\\partial U}{\\partial y\\partial x}=-\\dfrac{2}{(x+2y)^2}"
"\\dfrac{\\partial U}{\\partial x\\partial y}=-\\dfrac{2}{(x+2y)^2}"
"\\dfrac{\\partial U}{\\partial y\\partial x}=-\\dfrac{2}{(x+2y)^2}=\\dfrac{\\partial U}{\\partial x\\partial y}, True"
b.
"\\dfrac{\\partial U}{\\partial y\\partial x}=e^{xy}\\sin y+xye^{xy}\\sin y+ye^{xy}\\cos y"
"\\dfrac{\\partial U}{\\partial x\\partial y}=e^{xy}\\sin y+xye^{xy}\\sin y+ye^{xy}\\cos y"
"\\dfrac{\\partial U}{\\partial y\\partial x}=e^{xy}\\sin y+xye^{xy}\\sin y+ye^{xy}\\cos y"
3.
a.
"U = \\ln\\sqrt{x^2 + y^2}=\\dfrac{1}{2}\\ln (x^2+y^2)""U_x=\\dfrac{1}{2}(\\dfrac{1}{x^2+y^2})(2x)=\\dfrac{x}{x^2+y^2}"
"U_{xx}=\\dfrac{x^2+y^2-2x^2}{(x^2+y^2)^2}=\\dfrac{y^2-x^2}{(x^2+y^2)^2}"
"U_y=\\dfrac{1}{2}(\\dfrac{1}{x^2+y^2})(2x)=\\dfrac{y}{x^2+y^2}"
"U_{yy}=\\dfrac{x^2+y^2-2y^2}{(x^2+y^2)^2}=\\dfrac{x^2-y^2}{(x^2+y^2)^2}"
"U_{xx}+U_{yy}=\\dfrac{y^2-x^2}{(x^2+y^2)^2}+\\dfrac{x^2-y^2}{(x^2+y^2)^2}=0, True"
b.
"U_x=2x""U_{xx}=2"
"U_y=-2y"
"U_{yy}=-2"
"U_{xx}+U_{yy}=2-2=0, True"
Comments
Leave a comment