Question #202394

1. Determine the first order partial derivative of the following functions:

a. z = In (x + t^2)

b. F(x,y,z) = xy^2 e^-xz


2. Clairaut's Theorwm holds that Uxy = Uyx , show that the following equations obey Clairaut's Theorem:


a. U = In( x+2y)

b. U = e^xy sin y


3. Laplaces equation holds that Uxx + Uyy= 0, verify that the second derivative of the following equations are Laplace's equations:


a. U = In√x^2 + y^2

b. U = x^2 - y^2




1
Expert's answer
2022-01-10T14:36:41-0500

1.

a.

zx=1x+t2\dfrac{\partial z}{\partial x}=\dfrac{1}{x+t^2}

zt=2tx+t2\dfrac{\partial z}{\partial t}=\dfrac{2t}{x+t^2}

b.


Fx=y2exzxy2zexz\dfrac{\partial F}{\partial x}=y^2e^{-xz}-xy^2ze^{-xz}Fy=2yexz\dfrac{\partial F}{\partial y}=2ye^{-xz}Fz=x2y2exz\dfrac{\partial F}{\partial z}=-x^2y^2e^{-xz}

2.

a.


Ux=1x+2y\dfrac{\partial U}{\partial x}=\dfrac{1}{x+2y}

Uyx=2(x+2y)2\dfrac{\partial U}{\partial y\partial x}=-\dfrac{2}{(x+2y)^2}


Uy=2x+2y\dfrac{\partial U}{\partial y}=\dfrac{2}{x+2y}

Uxy=2(x+2y)2\dfrac{\partial U}{\partial x\partial y}=-\dfrac{2}{(x+2y)^2}

Uyx=2(x+2y)2=Uxy,True\dfrac{\partial U}{\partial y\partial x}=-\dfrac{2}{(x+2y)^2}=\dfrac{\partial U}{\partial x\partial y}, True

b.


Ux=yexysiny\dfrac{\partial U}{\partial x}=ye^{xy}\sin y

Uyx=exysiny+xyexysiny+yexycosy\dfrac{\partial U}{\partial y\partial x}=e^{xy}\sin y+xye^{xy}\sin y+ye^{xy}\cos y


Uy=xexysiny+exycosy\dfrac{\partial U}{\partial y}=xe^{xy}\sin y+e^{xy}\cos y

Uxy=exysiny+xyexysiny+yexycosy\dfrac{\partial U}{\partial x\partial y}=e^{xy}\sin y+xye^{xy}\sin y+ye^{xy}\cos y

Uyx=exysiny+xyexysiny+yexycosy\dfrac{\partial U}{\partial y\partial x}=e^{xy}\sin y+xye^{xy}\sin y+ye^{xy}\cos y




=Uxy,True=\dfrac{\partial U}{\partial x\partial y}, True

3.

a.

U=lnx2+y2=12ln(x2+y2)U = \ln\sqrt{x^2 + y^2}=\dfrac{1}{2}\ln (x^2+y^2)

Ux=12(1x2+y2)(2x)=xx2+y2U_x=\dfrac{1}{2}(\dfrac{1}{x^2+y^2})(2x)=\dfrac{x}{x^2+y^2}

Uxx=x2+y22x2(x2+y2)2=y2x2(x2+y2)2U_{xx}=\dfrac{x^2+y^2-2x^2}{(x^2+y^2)^2}=\dfrac{y^2-x^2}{(x^2+y^2)^2}

Uy=12(1x2+y2)(2x)=yx2+y2U_y=\dfrac{1}{2}(\dfrac{1}{x^2+y^2})(2x)=\dfrac{y}{x^2+y^2}

Uyy=x2+y22y2(x2+y2)2=x2y2(x2+y2)2U_{yy}=\dfrac{x^2+y^2-2y^2}{(x^2+y^2)^2}=\dfrac{x^2-y^2}{(x^2+y^2)^2}

Uxx+Uyy=y2x2(x2+y2)2+x2y2(x2+y2)2=0,TrueU_{xx}+U_{yy}=\dfrac{y^2-x^2}{(x^2+y^2)^2}+\dfrac{x^2-y^2}{(x^2+y^2)^2}=0, True

b.

Ux=2xU_x=2x

Uxx=2U_{xx}=2

Uy=2yU_y=-2y

Uyy=2U_{yy}=-2

Uxx+Uyy=22=0,TrueU_{xx}+U_{yy}=2-2=0, True

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS