Limx→∞ -(x+1)(e1/(x+1) -1)
We need to calculate "lim(x\\to\\infty) -(x+1)(e^\\frac {1} {(x+1)} -1)"
"=lim(x\\to\\infty)(-1)\\frac {e^\\frac {1} {(x+1)} -1 } {\\frac {1} {(x+1)}}"
It is in "\\frac 0 0" form after putting "\\infty" in place of "x" .So L hospital's rule is applicable here.
="(-1) lim(x\\to\\infty)\\frac {\\frac {d} {dx}(e^\\frac {1} {(x+1)} -1)} {\\frac {d} {dx}\\frac {1} {(x+1)}}"
"=(-1)lim(x\\to\\infty)\\frac {e^\\frac {1} {(x+1)}. \\frac {-1} {(x+1)^2}} {\\frac {-1} {(x+1)^2}}" "(\\because \\frac {d} {dx} \\frac u v" "=\\frac {(v.u'-u.v')} {v^2} )" So ("\\frac {d} {dx} \\frac {1} {x+1} =\\frac {-1} {(x+1)^2})"
( "\\frac {d} {dx} e^x=e^x)"
"=(-1)lim(x\\to\\infty)e^\\frac {1} {(x+1)}"
"=(-1) e^\\frac {1} {\\infty}"
"=(-1)e^0"
"=(-1).1 =-1" (Ans)
Comments
Leave a comment