Find ∫ ln 3𝑥 − 1 𝑥 5 + cos 4𝑥 − 𝑒 −𝑥 2 ⁄ 𝑑x
∫ln(3x)−x5+cos(4x)−e−x2\int ln(3x) -x^5 +cos(4x) -e^{\dfrac{-x}{2}}∫ln(3x)−x5+cos(4x)−e2−x
∫1×ln(3x)−x5+cos(4x)−e−x2\int 1\times ln(3x) -x^5 +cos(4x) -e^{\dfrac{-x}{2}}∫1×ln(3x)−x5+cos(4x)−e2−x
[ln(3x)x−∫x×1x]+sin(4x)4−x66−(−2e−x2)[ln(3x)x-\int x \times \dfrac{1}{x} ] +\dfrac{sin(4x)}{4}-{ \dfrac{x^6}{6} } -(-2e^{\dfrac{-x}{2}})[ln(3x)x−∫x×x1]+4sin(4x)−6x6−(−2e2−x)
xln(3x)−x+sin(4x)4−x66+2e−x2+Cxln(3x)- x +\dfrac{sin(4x)}{4}-{ \dfrac{x^6}{6} } +2e^{\dfrac{-x}{2}} +Cxln(3x)−x+4sin(4x)−6x6+2e2−x+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments