Question #203419

Given that 𝑓(𝑥) = 3𝑥 2 − 4𝑥 + 7, use the definition of the derivative to find 𝑓 ′ (𝑥).


1
Expert's answer
2021-06-08T17:30:31-0400

Given that 𝑓(𝑥)=3𝑥24𝑥+7𝑓(𝑥) = 3𝑥^2 − 4𝑥 + 7 , let us find 𝑓(𝑥)𝑓'(𝑥):


f(x)=limΔx0f(x+Δx)f(x)Δx=limΔx03(x+Δx)24(x+Δx)+7(3x34x+7)Δx=limΔx03x3+6xΔx+3(Δx)24x4Δx+73x2+4x7Δx=limΔx06xΔx+3(Δx)24ΔxΔx=limΔx0(6x+3Δx4)=6x4.f'(x)=\lim\limits_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}= \lim\limits_{\Delta x\to 0}\frac{3(x+\Delta x)^2-4(x+\Delta x)+7-(3x^3-4x+7)}{\Delta x}= \lim\limits_{\Delta x\to 0}\frac{3x^3+6x\Delta x+3(\Delta x)^2-4x-4\Delta x+7-3x^2+4x-7}{\Delta x}= \lim\limits_{\Delta x\to 0}\frac{6x\Delta x+3(\Delta x)^2-4\Delta x}{\Delta x}= \lim\limits_{\Delta x\to 0}(6x+3\Delta x-4)=6x-4.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS