Given that π(π₯) = 3π₯ 2 β 4π₯ + 7, use the definition of the derivative to find π β² (π₯).
Given that "\ud835\udc53(\ud835\udc65) = 3\ud835\udc65^2 \u2212 4\ud835\udc65 + 7" , let us find "\ud835\udc53'(\ud835\udc65)":
"f'(x)=\\lim\\limits_{\\Delta x\\to 0}\\frac{f(x+\\Delta x)-f(x)}{\\Delta x}=\n\\lim\\limits_{\\Delta x\\to 0}\\frac{3(x+\\Delta x)^2-4(x+\\Delta x)+7-(3x^3-4x+7)}{\\Delta x}=\n\\lim\\limits_{\\Delta x\\to 0}\\frac{3x^3+6x\\Delta x+3(\\Delta x)^2-4x-4\\Delta x+7-3x^2+4x-7}{\\Delta x}=\n\\lim\\limits_{\\Delta x\\to 0}\\frac{6x\\Delta x+3(\\Delta x)^2-4\\Delta x}{\\Delta x}=\n\\lim\\limits_{\\Delta x\\to 0}(6x+3\\Delta x-4)=6x-4."
Comments
Leave a comment