Express the function 𝑓(𝑥) = 𝑥 /(𝑥−3)2 as partial fractions and hence find ∫ 𝑓(𝑥)𝑑x
Solution
The function 𝑓(𝑥) = 𝑥 /(𝑥−3)2 may be represented as sum of partial fractions f(x) = A/(x-3)+B/(x-3)2 where A, B are arbitrary constants. From equality 𝑥 /(𝑥−3)2 = A/(x-3)+B/(x-3)2 we’ll get
A(x-3)+B = x => A=1, B=3A=3 => 𝑓(𝑥) = 1/(𝑥−3)+3/(𝑥−3)2
Now ∫ 𝑓(𝑥)𝑑x = ∫ [1/(𝑥−3)+3/(𝑥−3)2]𝑑x = ∫ [1/(𝑥−3)]𝑑x + 3∫ [1/(𝑥−3)2]𝑑x = ln|x-3|-3/(𝑥−3)+C
Answer
𝑓(𝑥) = 1/(𝑥−3)+3/(𝑥−3)2
∫ 𝑓(𝑥)𝑑x = ln|x-3|-3/(𝑥−3)+C
Comments