Find ∫ 𝑥𝑐𝑜𝑠 𝑥𝑑x
Solution.
To calculate this integral we use the method of integration by parts.
Let be u=x,dv=cosxdx.u=x, dv=\cos {x} dx.u=x,dv=cosxdx.
From here du=1,v=sinx.du=1, v=\sin x.du=1,v=sinx.
Therefore, ∫xcosxdx=xsinx−∫1⋅sinxdx=xsinx+cosx+C,\int x\cos xdx=x\sin x-\int 1\cdot\sin xdx=x\sin x+\cos x+C,∫xcosxdx=xsinx−∫1⋅sinxdx=xsinx+cosx+C,
where CCC is some constant.
Answer.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments