For what value of b is the function 𝑓(𝑥) = { 𝑥 2 − 1 𝑥 < 3 2𝑏𝑥 𝑥 ≥ 3 continuous everywhere
"\\lim\\limits_{x\\to3^+}f(x)=\\lim\\limits_{x\\to3^+}(2bx)=2b(3)=6b"
"\\lim\\limits_{x\\to3^-}f(x)=8=\\lim\\limits_{x\\to3^+}f(x)=6b"
"b=\\dfrac{4}{3}"
Then
"f(3)=2(\\dfrac{4}{3})(3)=9"
Then
The function "f(x)" is continuous everywhere if "b=\\dfrac{4}{3} ."
Comments
Leave a comment