Question #203447

For what value of b is the function 𝑓(𝑥) = { 𝑥 2 − 1 𝑥 < 3 2𝑏𝑥 𝑥 ≥ 3 continuous everywhere


1
Expert's answer
2021-06-07T16:49:47-0400
limx3f(x)=limx3(x21)=(3)21=8\lim\limits_{x\to3^-}f(x)=\lim\limits_{x\to3^-}(x^2-1)=(3)^2-1=8

limx3+f(x)=limx3+(2bx)=2b(3)=6b\lim\limits_{x\to3^+}f(x)=\lim\limits_{x\to3^+}(2bx)=2b(3)=6b

limx3f(x)=8=limx3+f(x)=6b\lim\limits_{x\to3^-}f(x)=8=\lim\limits_{x\to3^+}f(x)=6b

b=43b=\dfrac{4}{3}

Then


limx3f(x)=limx3+f(x)=limx3f(x)=8\lim\limits_{x\to3^-}f(x)=\lim\limits_{x\to3^+}f(x)=\lim\limits_{x\to3}f(x)=8

f(3)=2(43)(3)=9f(3)=2(\dfrac{4}{3})(3)=9

Then


limx3f(x)=8=f(3)\lim\limits_{x\to3}f(x)=8=f(3)

The function f(x)f(x) is continuous everywhere if b=43.b=\dfrac{4}{3} .



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS