Given that π§1 = 3 + π πππ π§2 = 2 β π: i. Find the modulus and argument of π§1/π§2 (5 marks) ii. Express π§1/π§2 in polar and exponential form (2 marks) iii. Use de Moivreβs theorem to find an expression for ( π§1/π§2) ^4
1
Expert's answer
2021-06-07T17:20:31-0400
i)β£z2βz1βββ£=β£2βi3+iββ£=β£22βi2(3+i)(2+i)ββ£=β£55(1+i)ββ£=β£1+iβ£=12+12β=2βarg(z2βz1ββ)=arg(1+i)=tanβ1(1)=4Οβii)Since,z=reiΞΈ.z2βz1ββ=1+i=2βei4Οβ.This is the exponential form.Polarform,z=reiΞΈ=r(cosΞΈ+isinΞΈ).z2βz1ββ=2βei4Οβ=2β(cos4Οβ+isin4Οβ)iii)by using de Moivreβs theorem,(z2βz1ββ)4=(2β)4ei44Οβ=4eiΟ=4(cosΟ+isinΟ)=4((β1)+i(0))=β4
Comments