Given that π§1 = 3 + π πππ π§2 = 2 β π: i. Find the modulus and argument of π§1/π§2 (5 marks) ii. Express π§1/π§2 in polar and exponential form (2 marks) iii. Use de Moivreβs theorem to find an expression for ( π§1/π§2) ^4Β
"i)\\\\\n|\\frac{z_1}{z_2}|=|\\frac{3+i}{2-i}|=|\\frac{(3+i)(2+i)}{2^2-i^2}|=|\\frac{5(1+i)}{5}|=|1+i|=\\sqrt{1^2+1^2}=\\sqrt2\\\\\narg(\\frac{z_1}{z_2})=arg(1+i)=tan^{-1}(1)=\\frac{\\pi}{4}\\\\\nii)\\\\\nSince, z=re^{i\\theta}.\\\\\n\\frac{z_1}{z_2}=1+i=\\sqrt2e^{i\\frac{\\pi}{4}}.\\\\\n\\text{This is the exponential form.}\\\\\nPolar form, z=re^{i\\theta}=r(cos\\theta +isin\\theta).\\\\\n\\frac{z_1}{z_2}=\\sqrt2e^{i\\frac{\\pi}{4}}=\\sqrt2({cos\\frac{\\pi}{4}}+isin{\\frac{\\pi}{4}})\\\\\niii)\\\\\n\\text{by using de Moivre's theorem,}\\\\\n(\\frac{z_1}{z_2})^4=(\\sqrt2)^4e^{i4\\frac{\\pi}{4}}\n=4e^{i\\pi}\n=4(cos\\pi+isin\\pi)=4((-1)+i(0))=-4"
Comments
Leave a comment