A function is defined by the polynomial π(π₯) = 3π₯ 4 β 4π₯ 3 β 12π₯ 2 + 8. Find and classify all the stationary points of f(x).
"f(x)=3x^4-4x^3-12x^2+8"
differentiating with respect to x
"f'(x)=12x^3-12x^2-24x"
to find stationary points put "f'(x)=0"
"\\Rightarrow12x^3-12x^2-24x=0"
"\\Rightarrow x^3-x^2-2x=0"
"\\Rightarrow x(x^2-x-2)=0"
"\\Rightarrow x(x-2)(x+1)=0"
stationary points are
"x=-1,0,2"
differentiating again with respect to x
"f''(x)=36x^2-24x-24"
"f''(-1)=36>0 \\space(x=-1 \\space is \\space local\\space minimum)"
"f''(0)=-24<0\\space(x=0 \\space is \\space local \\space maximum)"
"f''(2)=72>0\\space(x=2 \\space is \\space local\\space minimum)"
Comments
Leave a comment