f(x)=3x4β4x3β12x2+8
differentiating with respect to x
fβ²(x)=12x3β12x2β24x
to find stationary points put fβ²(x)=0
β12x3β12x2β24x=0
βx3βx2β2x=0
βx(x2βxβ2)=0
βx(xβ2)(x+1)=0
stationary points are
x=β1,0,2
differentiating again with respect to x
fβ²β²(x)=36x2β24xβ24
fβ²β²(β1)=36>0 (x=β1 is local minimum)
fβ²β²(0)=β24<0 (x=0 is local maximum)
fβ²β²(2)=72>0 (x=2 is local minimum)
Comments
Leave a comment