Answer to Question #203448 in Calculus for jay

Question #203448

A function is defined by the polynomial 𝑓(π‘₯) = 3π‘₯ 4 βˆ’ 4π‘₯ 3 βˆ’ 12π‘₯ 2 + 8. Find and classify all the stationary points of f(x).


1
Expert's answer
2021-06-08T17:21:18-0400

f(x)=3x4βˆ’4x3βˆ’12x2+8f(x)=3x^4-4x^3-12x^2+8

differentiating with respect to x

fβ€²(x)=12x3βˆ’12x2βˆ’24xf'(x)=12x^3-12x^2-24x

to find stationary points put fβ€²(x)=0f'(x)=0

β‡’12x3βˆ’12x2βˆ’24x=0\Rightarrow12x^3-12x^2-24x=0

β‡’x3βˆ’x2βˆ’2x=0\Rightarrow x^3-x^2-2x=0

β‡’x(x2βˆ’xβˆ’2)=0\Rightarrow x(x^2-x-2)=0

β‡’x(xβˆ’2)(x+1)=0\Rightarrow x(x-2)(x+1)=0


stationary points are

x=βˆ’1,0,2x=-1,0,2


differentiating again with respect to x

fβ€²β€²(x)=36x2βˆ’24xβˆ’24f''(x)=36x^2-24x-24

fβ€²β€²(βˆ’1)=36>0 (x=βˆ’1 is local minimum)f''(-1)=36>0 \space(x=-1 \space is \space local\space minimum)

fβ€²β€²(0)=βˆ’24<0 (x=0 is local maximum)f''(0)=-24<0\space(x=0 \space is \space local \space maximum)

fβ€²β€²(2)=72>0 (x=2 is local minimum)f''(2)=72>0\space(x=2 \space is \space local\space minimum)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment