Show that ππ¦/ππ₯ = π ππ^2 x given that π¦ = tan x
"=\\lim\\limits_{h\\to0}\\dfrac{\\sin(x+h-x)}{h \\cos(x+h)\\cos(x)}"
"=\\lim\\limits_{h\\to0}\\dfrac{\\sin(h)}{h }\\cdot\\lim\\limits_{h\\to0}\\dfrac{1}{ \\cos(x+h)\\cos(x)}"
"=1\\cdot\\lim\\limits_{h\\to0}\\dfrac{1}{h \\cos(x+h)\\cos(x)}"
"=\\sec^2 (x)"
"\\dfrac{d}{dx}(\\tan (x))=\\sec^2(x)"
Comments
Leave a comment