Question #203446

Show that 𝑑𝑦/𝑑𝑥 = 𝑠𝑒𝑐^2 x given that 𝑦 = tan x


1
Expert's answer
2021-06-07T16:21:14-0400
ddx(tan(x))=limh0tan(x+h)tan(x)h\dfrac{d}{dx}(\tan (x))=\lim\limits_{h\to0}\dfrac{\tan(x+h)-\tan(x)}{h}


=limh0sin(x+h)cos(x)cos(x+h)sin(x)hcos(x+h)cos(x)=\lim\limits_{h\to0}\dfrac{\sin(x+h)\cos(x)-\cos(x+h)\sin(x)}{h \cos(x+h)\cos(x)}

=limh0sin(x+hx)hcos(x+h)cos(x)=\lim\limits_{h\to0}\dfrac{\sin(x+h-x)}{h \cos(x+h)\cos(x)}


=limh0sin(x+hx)hcos(x+h)cos(x)=\lim\limits_{h\to0}\dfrac{\sin(x+h-x)}{h \cos(x+h)\cos(x)}

=limh0sin(h)hlimh01cos(x+h)cos(x)=\lim\limits_{h\to0}\dfrac{\sin(h)}{h }\cdot\lim\limits_{h\to0}\dfrac{1}{ \cos(x+h)\cos(x)}

=1limh01hcos(x+h)cos(x)=1\cdot\lim\limits_{h\to0}\dfrac{1}{h \cos(x+h)\cos(x)}


=1cos(x+0)cos(x)=\dfrac{1}{ \cos(x+0)\cos(x)}

=sec2(x)=\sec^2 (x)

ddx(tan(x))=sec2(x)\dfrac{d}{dx}(\tan (x))=\sec^2(x)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS