Define h(0,0) in such a way that h is continuous at origin h(u,v)=ln((nu^2-u^2 v^2+nv^2)/(u^2+v^2 ))
h(u,v)=lnnu2−u2v2+nv2u2+v2h(u,v)=\ln\dfrac{nu^2-u^2 v^2+nv^2}{u^2+v^2 }h(u,v)=lnu2+v2nu2−u2v2+nv2
h(u,v)=lnnu2+nv2−u2v2u2+v2h(u,v)=\ln\dfrac{nu^2+nv^2-u^2 v^2}{u^2+v^2 }h(u,v)=lnu2+v2nu2+nv2−u2v2
h(u,v)=lnn(u2+v2)−(uv)2u2+v2h(u,v)=\ln\dfrac{n(u^2+v^2)-(uv)^2}{u^2+v^2 }h(u,v)=lnu2+v2n(u2+v2)−(uv)2
h(u,v)=ln(n(u2+v2)u2+v2−(uv)2u2+v2)h(u,v)=\ln(\dfrac{n(u^2+v^2)}{u^2+v^2 }-\dfrac{(uv)^2}{u^2+v^2 })h(u,v)=ln(u2+v2n(u2+v2)−u2+v2(uv)2)
h(u,v)=ln(n−(uv)2u2+v2)h(u,v)=\ln({n}- \dfrac{(uv)^2}{u^2+v^2 })h(u,v)=ln(n−u2+v2(uv)2)
limu,v→0,0=lnn\lim\limits_{u,v \to 0,0}= \ln nu,v→0,0lim=lnn
∴\therefore∴ h(u,v) is not continuous at origin.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Dear Waqar, we try to solve the question as soon as possible. If a solution should meet special requirements, you can place an order as well.
Give answer ,hurry up
Comments
Dear Waqar, we try to solve the question as soon as possible. If a solution should meet special requirements, you can place an order as well.
Give answer ,hurry up
Leave a comment