Question #186257

Improper Integral (Integrals with Infinite Limits)


∫dx/(x^2-2x-3) from 0 to 4


1
Expert's answer
2021-05-07T14:16:03-0400

04dx(x22x3)∫_0^4\dfrac{dx}{(x^2-2x-3)}


I=04dx(x22x3)I =∫_0^4\dfrac{dx}{(x^2-2x-3)}


We can factorise the integrand and decompose into partial fraction as follows:

1(x22x3)1(x3)(x+1)\dfrac{1}{(x^2-2x-3)}\equiv\dfrac{1}{(x-3)(x+1)}


Thus,

I=04dx(x22x3)=0414(x3)+14(x+1)I =∫_0^4\dfrac{dx}{(x^2-2x-3)}= ∫_0^4\dfrac{\frac{1}{4}}{(x-3)}+\dfrac{\frac{-1}{4}}{(x+1)}


I=14041(x3)1(x+1)I =\dfrac{1}{4}∫_0^4\dfrac{1}{(x-3)}- \dfrac{1}{(x+1)}


I=14 [lnx3lnx+1]04I = \dfrac{1}{4} \ [ ln|x-3| - ln |x+1|]_0^4


I=14 (ln1ln5)(ln3ln1)I =\dfrac14 \ {(ln1-ln5)-(ln3-ln1)}


I=14 (0ln5ln30)I = \dfrac{1}{4 }\ (0-ln5-ln3-0)


I=14 (ln5+ln3)I= -\dfrac{1}{4 }\ (ln5+ln3)

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS