∫04(x2−2x−3)dx
I=∫04(x2−2x−3)dx
We can factorise the integrand and decompose into partial fraction as follows:
(x2−2x−3)1≡(x−3)(x+1)1
Thus,
I=∫04(x2−2x−3)dx=∫04(x−3)41+(x+1)4−1
I=41∫04(x−3)1−(x+1)1
I=41 [ln∣x−3∣−ln∣x+1∣]04
I=41 (ln1−ln5)−(ln3−ln1)
I=41 (0−ln5−ln3−0)
I=−41 (ln5+ln3)
Comments