Question #186244

Integration by Partial Fractions


∫dx/(tanx-sinx) from π/2 to π/3 


1
Expert's answer
2021-05-07T09:44:16-0400

π2π3dxtanxsinx=π2π3dxsinxcosxsinx=π2π3cosxdxsinxsinxcosx=π2π3cosxsinxdxsin2x(1cosx)=π2π3cosxsinxdx(1cos2x)(1cosx)=π2π3cosxsinxdx(1+cosx)(1cosx)2\int\limits_{\frac{\pi }{2}}^{\frac{\pi }{3}} {\frac{{dx}}{{\tan x - \sin x}}} = \int\limits_{\frac{\pi }{2}}^{\frac{\pi }{3}} {\frac{{dx}}{{\frac{{\sin x}}{{\cos x}} - \sin x}}} = \int\limits_{\frac{\pi }{2}}^{\frac{\pi }{3}} {\frac{{\cos xdx}}{{\sin x - \sin x\cos x}} = } \int\limits_{\frac{\pi }{2}}^{\frac{\pi }{3}} {\frac{{\cos x\sin xdx}}{{{{\sin }^2}x\left( {1 - \cos x} \right)}}} = \int\limits_{\frac{\pi }{2}}^{\frac{\pi }{3}} {\frac{{\cos x\sin xdx}}{{\left( {1 - {{\cos }^2}x} \right)\left( {1 - \cos x} \right)}}} = \int\limits_{\frac{\pi }{2}}^{\frac{\pi }{3}} {\frac{{\cos x\sin xdx}}{{\left( {1 + \cos x} \right){{\left( {1 - \cos x} \right)}^2}}}}

Let

u=cosxdu=sinxdx,x[π2;π3]u[0;12]u = \cos x \Rightarrow du = - \sin xdx,\,\,x \in \left[ {\frac{\pi }{2};\,\frac{\pi }{3}} \right] \Rightarrow u \in \left[ {0;\,\frac{1}{2}} \right]

Then

π2π3cosxsinxdx(1+cosx)(1cosx)2=012udu(1+u)(1u)2\int\limits_{\frac{\pi }{2}}^{\frac{\pi }{3}} {\frac{{\cos x\sin xdx}}{{\left( {1 + \cos x} \right){{\left( {1 - \cos x} \right)}^2}}}} = \int\limits_0^{\frac{1}{2}} {\frac{{ - udu}}{{\left( {1 + u} \right){{\left( {1 - u} \right)}^2}}}}

We expand the integrand into partial fractions

u(1+u)(1u)2=A1+u+B1u+C(1u)2=A(1u)2+B(1u)(1+u)+C(1+u)(1+u)(1u)2=A(12u+u2)+B(1u2)+C(1+u)(1+u)(1u)2=u2(AB)+u(2A+C)+A+B+C(1+u)(1u)2\frac{{ - u}}{{\left( {1 + u} \right){{\left( {1 - u} \right)}^2}}} = \frac{A}{{1 + u}} + \frac{B}{{1 - u}} + \frac{C}{{{{\left( {1 - u} \right)}^2}}} = \frac{{A{{\left( {1 - u} \right)}^2} + B(1 - u)(1 + u) + C(1 + u)}}{{\left( {1 + u} \right){{\left( {1 - u} \right)}^2}}} = \frac{{A\left( {1 - 2u + {u^2}} \right) + B\left( {1 - {u^2}} \right) + C(1 + u)}}{{\left( {1 + u} \right){{\left( {1 - u} \right)}^2}}} = \frac{{{u^2}(A - B) + u( - 2A + C) + A + B + C}}{{\left( {1 + u} \right){{\left( {1 - u} \right)}^2}}}

AB=0A=BA - B = 0 \Rightarrow A = B

2A+C=1C=2A1- 2A + C = - 1 \Rightarrow C = 2A - 1

A+B+C=02A+2A1=0A=14B=14C=12A + B + C = 0 \Rightarrow 2A + 2A - 1 = 0 \Rightarrow A = \frac{1}{4} \Rightarrow B = \frac{1}{4} \Rightarrow C = - \frac{1}{2}

Then

012udu(1+u)(1u)2=14012du1+u+14012du1u12012du(1u)2=14012d(1+u)1+u14012d(1u)1u+12012d(1u)(1u)2=14ln1+u01214ln1u01212(1u)012=14(ln32ln1ln12+ln1)12(11211)=14ln312\int\limits_0^{\frac{1}{2}} {\frac{{ - udu}}{{\left( {1 + u} \right){{\left( {1 - u} \right)}^2}}}} = \frac{1}{4}\int\limits_0^{\frac{1}{2}} {\frac{{du}}{{1 + u}}} + \frac{1}{4}\int\limits_0^{\frac{1}{2}} {\frac{{du}}{{1 - u}}} - \frac{1}{2}\int\limits_0^{\frac{1}{2}} {\frac{{du}}{{{{\left( {1 - u} \right)}^2}}}} = \frac{1}{4}\int\limits_0^{\frac{1}{2}} {\frac{{d\left( {1 + u} \right)}}{{1 + u}}} - \frac{1}{4}\int\limits_0^{\frac{1}{2}} {\frac{{d\left( {1 - u} \right)}}{{1 - u}}} + \frac{1}{2}\int\limits_0^{\frac{1}{2}} {\frac{{d\left( {1 - u} \right)}}{{{{\left( {1 - u} \right)}^2}}}} = \frac{1}{4}\ln \left. {|1 + u|} \right|_0^{\frac{1}{2}} - \frac{1}{4}\ln \left. {|1 - u|} \right|_0^{\frac{1}{2}} - \left. {\frac{1}{{2\left( {1 - u} \right)}}} \right|_0^{\frac{1}{2}} = \frac{1}{4}\left( {\ln \frac{3}{2} - \ln 1 - \ln \frac{1}{2} + \ln 1} \right) - \frac{1}{2}\left( {\frac{1}{{\frac{1}{2}}} - \frac{1}{1}} \right) = \frac{1}{4}\ln 3 - \frac{1}{2}


Answer: 14ln312\frac{1}{4}\ln 3 - \frac{1}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS