2π∫3πtanx−sinxdx=2π∫3πcosxsinx−sinxdx=2π∫3πsinx−sinxcosxcosxdx=2π∫3πsin2x(1−cosx)cosxsinxdx=2π∫3π(1−cos2x)(1−cosx)cosxsinxdx=2π∫3π(1+cosx)(1−cosx)2cosxsinxdx
Let
u=cosx⇒du=−sinxdx,x∈[2π;3π]⇒u∈[0;21]
Then
2π∫3π(1+cosx)(1−cosx)2cosxsinxdx=0∫21(1+u)(1−u)2−udu
We expand the integrand into partial fractions
(1+u)(1−u)2−u=1+uA+1−uB+(1−u)2C=(1+u)(1−u)2A(1−u)2+B(1−u)(1+u)+C(1+u)=(1+u)(1−u)2A(1−2u+u2)+B(1−u2)+C(1+u)=(1+u)(1−u)2u2(A−B)+u(−2A+C)+A+B+C
A−B=0⇒A=B
−2A+C=−1⇒C=2A−1
A+B+C=0⇒2A+2A−1=0⇒A=41⇒B=41⇒C=−21
Then
0∫21(1+u)(1−u)2−udu=410∫211+udu+410∫211−udu−210∫21(1−u)2du=410∫211+ud(1+u)−410∫211−ud(1−u)+210∫21(1−u)2d(1−u)=41ln∣1+u∣∣021−41ln∣1−u∣∣021−2(1−u)1∣∣021=41(ln23−ln1−ln21+ln1)−21(211−11)=41ln3−21
Answer: 41ln3−21
Comments