1 ) ∫ d t 1 + sin t + cos t 2 ) ∫ d y 5 + 4 cos y 1) \displaystyle\int\frac{dt}{1+\sin{t}+\cos{t}}
\\
2) \displaystyle\int\frac{dy}{5+4\cos{y}} 1 ) ∫ 1 + sin t + cos t d t 2 ) ∫ 5 + 4 cos y d y
Solution:
1 ) ∫ d t 1 + sin t + cos t 1) \displaystyle\int\frac{dt}{1+\sin{t}+\cos{t}} 1 ) ∫ 1 + sin t + cos t d t
Let's apply the change of variables:
tan t 2 = x \tan{\frac t2}=x tan 2 t = x ; d t 2 cos 2 t 2 = d x \displaystyle\frac{dt}{2\cos^2{\frac t2}}=dx 2 cos 2 2 t d t = d x ; 1 2 ( 1 + tan 2 t 2 ) d t = d x \displaystyle\frac12(1+\tan^2{\frac t2})dt=dx 2 1 ( 1 + tan 2 2 t ) d t = d x ; d t = 2 d x 1 + x 2 \displaystyle dt=\frac{2dx}{1+x^2} d t = 1 + x 2 2 d x .
sin t = 2 tan t 2 1 + tan 2 t 2 = 2 x 1 + x 2 \displaystyle\sin{t}=\frac{2\tan{\frac t2}}{1+\tan^2{\frac t2}}=\frac{2x}{1+x^2} sin t = 1 + tan 2 2 t 2 tan 2 t = 1 + x 2 2 x ; cos t = 1 − tan 2 t 2 1 + tan 2 t 2 = 1 − x 2 1 + x 2 \displaystyle\cos{t}=\frac{1-\tan^2{\frac t2}}{1+\tan^2{\frac t2}}=\frac{1-x^2}{1+x^2} cos t = 1 + tan 2 2 t 1 − tan 2 2 t = 1 + x 2 1 − x 2 .
∫ d t 1 + sin t + cos t = \displaystyle\int\frac{dt}{1+\sin{t}+\cos{t}}= ∫ 1 + sin t + cos t d t = ∫ 2 d x ( 1 + x 2 ) ( 1 + 2 x 1 + x 2 + 1 − x 2 1 + x 2 ) = \displaystyle\int\frac{2dx}{(1+x^2)(1+\frac{2x}{1+x^2}+\frac{1-x^2}{1+x^2})}= ∫ ( 1 + x 2 ) ( 1 + 1 + x 2 2 x + 1 + x 2 1 − x 2 ) 2 d x = ∫ 2 d x ( 2 + 2 x ) = \displaystyle\int\frac{2dx}{(2+2x)}= ∫ ( 2 + 2 x ) 2 d x = ∫ d x ( 1 + x ) = ln ∣ 1 + x ∣ + C = ln ∣ 1 + tan t 2 ∣ + C \displaystyle\int\frac{dx}{(1+x)}=\ln|1+x|+C=\ln{\left|1+\tan{\frac t2}\right|}+C ∫ ( 1 + x ) d x = ln ∣1 + x ∣ + C = ln ∣ ∣ 1 + tan 2 t ∣ ∣ + C .
(C is constant).
2 ) ∫ d y 5 + 4 cos y 2) \displaystyle\int\frac{dy}{5+4\cos{y}} 2 ) ∫ 5 + 4 cos y d y
Let's apply the change of variables:
tan y 2 = x \tan{\frac y2}=x tan 2 y = x ; d y 2 cos 2 y 2 = d x \displaystyle\frac{dy}{2\cos^2{\frac y2}}=dx 2 cos 2 2 y d y = d x ; 1 2 ( 1 + tan 2 y 2 ) d y = d x \displaystyle\frac12(1+\tan^2{\frac y2})dy=dx 2 1 ( 1 + tan 2 2 y ) d y = d x ; d y = 2 d x 1 + x 2 \displaystyle dy=\frac{2dx}{1+x^2} d y = 1 + x 2 2 d x .
cos y = 1 − tan 2 y 2 1 + tan 2 y 2 = 1 − x 2 1 + x 2 \displaystyle\cos{y}=\frac{1-\tan^2{\frac y2}}{1+\tan^2{\frac y2}}=\frac{1-x^2}{1+x^2} cos y = 1 + tan 2 2 y 1 − tan 2 2 y = 1 + x 2 1 − x 2 .
∫ d y 5 + 4 cos y = ∫ 2 d x ( 1 + x 2 ) ( 5 + 4 ⋅ 1 − x 2 1 + x 2 ) = \displaystyle\int\frac{dy}{5+4\cos{y}}=\int\frac{2dx}{(1+x^2)(5+4\cdot\frac{1-x^2}{1+x^2})}= ∫ 5 + 4 cos y d y = ∫ ( 1 + x 2 ) ( 5 + 4 ⋅ 1 + x 2 1 − x 2 ) 2 d x = ∫ 2 d x 9 + x 2 = 2 3 ∫ d x 3 1 + x 2 9 = \displaystyle\int\frac{2dx}{9+x^2}=\frac23\int\frac{\frac{dx}{3}}{1+\frac{x^2}{9}}= ∫ 9 + x 2 2 d x = 3 2 ∫ 1 + 9 x 2 3 d x = 2 3 arctan x 3 + C = 2 3 arctan ( 1 3 tan y 2 ) + C \displaystyle\frac23\arctan{\frac{x}{3}}+C=\frac23\arctan{\left(\frac{1}{3}\tan{\frac{y}{2}}\right)}+C 3 2 arctan 3 x + C = 3 2 arctan ( 3 1 tan 2 y ) + C .
(C is constant).
Answer:
1)∫ d t 1 + sin t + cos t = ln ∣ 1 + tan t 2 ∣ + C \displaystyle\int\frac{dt}{1+\sin{t}+\cos{t}}=\ln{\left|1+\tan{\frac t2}\right|}+C ∫ 1 + sin t + cos t d t = ln ∣ ∣ 1 + tan 2 t ∣ ∣ + C ;
2 ) ∫ d y 5 + 4 cos y = 2 3 arctan ( 1 3 tan y 2 ) + C 2) \displaystyle\int\frac{dy}{5+4\cos{y}}=\frac23\arctan{\left(\frac{1}{3}\tan{\frac{y}{2}}\right)}+C 2 ) ∫ 5 + 4 cos y d y = 3 2 arctan ( 3 1 tan 2 y ) + C .
Comments