Question #186247

Integration by Partial Fractions


1.) ∫dt/(1+sint+cost)


2.) ∫dy/(5+4cosy)


1
Expert's answer
2021-05-07T10:20:30-0400

1)dt1+sint+cost2)dy5+4cosy1) \displaystyle\int\frac{dt}{1+\sin{t}+\cos{t}} \\ 2) \displaystyle\int\frac{dy}{5+4\cos{y}}

Solution:

1)dt1+sint+cost1) \displaystyle\int\frac{dt}{1+\sin{t}+\cos{t}}

Let's apply the change of variables:

tant2=x\tan{\frac t2}=x; dt2cos2t2=dx\displaystyle\frac{dt}{2\cos^2{\frac t2}}=dx ; 12(1+tan2t2)dt=dx\displaystyle\frac12(1+\tan^2{\frac t2})dt=dx ; dt=2dx1+x2\displaystyle dt=\frac{2dx}{1+x^2} .

sint=2tant21+tan2t2=2x1+x2\displaystyle\sin{t}=\frac{2\tan{\frac t2}}{1+\tan^2{\frac t2}}=\frac{2x}{1+x^2} ; cost=1tan2t21+tan2t2=1x21+x2\displaystyle\cos{t}=\frac{1-\tan^2{\frac t2}}{1+\tan^2{\frac t2}}=\frac{1-x^2}{1+x^2} .

dt1+sint+cost=\displaystyle\int\frac{dt}{1+\sin{t}+\cos{t}}= 2dx(1+x2)(1+2x1+x2+1x21+x2)=\displaystyle\int\frac{2dx}{(1+x^2)(1+\frac{2x}{1+x^2}+\frac{1-x^2}{1+x^2})}= 2dx(2+2x)=\displaystyle\int\frac{2dx}{(2+2x)}= dx(1+x)=ln1+x+C=ln1+tant2+C\displaystyle\int\frac{dx}{(1+x)}=\ln|1+x|+C=\ln{\left|1+\tan{\frac t2}\right|}+C .

(C is constant).

2)dy5+4cosy2) \displaystyle\int\frac{dy}{5+4\cos{y}}

Let's apply the change of variables:

tany2=x\tan{\frac y2}=x; dy2cos2y2=dx\displaystyle\frac{dy}{2\cos^2{\frac y2}}=dx ; 12(1+tan2y2)dy=dx\displaystyle\frac12(1+\tan^2{\frac y2})dy=dx ; dy=2dx1+x2\displaystyle dy=\frac{2dx}{1+x^2} .

cosy=1tan2y21+tan2y2=1x21+x2\displaystyle\cos{y}=\frac{1-\tan^2{\frac y2}}{1+\tan^2{\frac y2}}=\frac{1-x^2}{1+x^2} .

dy5+4cosy=2dx(1+x2)(5+41x21+x2)=\displaystyle\int\frac{dy}{5+4\cos{y}}=\int\frac{2dx}{(1+x^2)(5+4\cdot\frac{1-x^2}{1+x^2})}= 2dx9+x2=23dx31+x29=\displaystyle\int\frac{2dx}{9+x^2}=\frac23\int\frac{\frac{dx}{3}}{1+\frac{x^2}{9}}= 23arctanx3+C=23arctan(13tany2)+C\displaystyle\frac23\arctan{\frac{x}{3}}+C=\frac23\arctan{\left(\frac{1}{3}\tan{\frac{y}{2}}\right)}+C .

(C is constant).

Answer:

1)dt1+sint+cost=ln1+tant2+C\displaystyle\int\frac{dt}{1+\sin{t}+\cos{t}}=\ln{\left|1+\tan{\frac t2}\right|}+C ;

2)dy5+4cosy=23arctan(13tany2)+C2) \displaystyle\int\frac{dy}{5+4\cos{y}}=\frac23\arctan{\left(\frac{1}{3}\tan{\frac{y}{2}}\right)}+C .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS