Integration by Partial Fractions
1.) ∫dt/(1+sint+cost)
2.) ∫dy/(5+4cosy)
"1) \\displaystyle\\int\\frac{dt}{1+\\sin{t}+\\cos{t}}\n\\\\\n2) \\displaystyle\\int\\frac{dy}{5+4\\cos{y}}"
Solution:
"1) \\displaystyle\\int\\frac{dt}{1+\\sin{t}+\\cos{t}}"
Let's apply the change of variables:
"\\tan{\\frac t2}=x"; "\\displaystyle\\frac{dt}{2\\cos^2{\\frac t2}}=dx" ; "\\displaystyle\\frac12(1+\\tan^2{\\frac t2})dt=dx" ; "\\displaystyle dt=\\frac{2dx}{1+x^2}" .
"\\displaystyle\\sin{t}=\\frac{2\\tan{\\frac t2}}{1+\\tan^2{\\frac t2}}=\\frac{2x}{1+x^2}" ; "\\displaystyle\\cos{t}=\\frac{1-\\tan^2{\\frac t2}}{1+\\tan^2{\\frac t2}}=\\frac{1-x^2}{1+x^2}" .
"\\displaystyle\\int\\frac{dt}{1+\\sin{t}+\\cos{t}}=" "\\displaystyle\\int\\frac{2dx}{(1+x^2)(1+\\frac{2x}{1+x^2}+\\frac{1-x^2}{1+x^2})}=" "\\displaystyle\\int\\frac{2dx}{(2+2x)}=" "\\displaystyle\\int\\frac{dx}{(1+x)}=\\ln|1+x|+C=\\ln{\\left|1+\\tan{\\frac t2}\\right|}+C" .
(C is constant).
"2) \\displaystyle\\int\\frac{dy}{5+4\\cos{y}}"
Let's apply the change of variables:
"\\tan{\\frac y2}=x"; "\\displaystyle\\frac{dy}{2\\cos^2{\\frac y2}}=dx" ; "\\displaystyle\\frac12(1+\\tan^2{\\frac y2})dy=dx" ; "\\displaystyle dy=\\frac{2dx}{1+x^2}" .
"\\displaystyle\\cos{y}=\\frac{1-\\tan^2{\\frac y2}}{1+\\tan^2{\\frac y2}}=\\frac{1-x^2}{1+x^2}" .
"\\displaystyle\\int\\frac{dy}{5+4\\cos{y}}=\\int\\frac{2dx}{(1+x^2)(5+4\\cdot\\frac{1-x^2}{1+x^2})}=" "\\displaystyle\\int\\frac{2dx}{9+x^2}=\\frac23\\int\\frac{\\frac{dx}{3}}{1+\\frac{x^2}{9}}=" "\\displaystyle\\frac23\\arctan{\\frac{x}{3}}+C=\\frac23\\arctan{\\left(\\frac{1}{3}\\tan{\\frac{y}{2}}\\right)}+C" .
(C is constant).
Answer:
1)"\\displaystyle\\int\\frac{dt}{1+\\sin{t}+\\cos{t}}=\\ln{\\left|1+\\tan{\\frac t2}\\right|}+C" ;
"2) \\displaystyle\\int\\frac{dy}{5+4\\cos{y}}=\\frac23\\arctan{\\left(\\frac{1}{3}\\tan{\\frac{y}{2}}\\right)}+C" .
Comments
Leave a comment