1)∫1+sint+costdt2)∫5+4cosydy
Solution:
1)∫1+sint+costdt
Let's apply the change of variables:
tan2t=x; 2cos22tdt=dx ; 21(1+tan22t)dt=dx ; dt=1+x22dx .
sint=1+tan22t2tan2t=1+x22x ; cost=1+tan22t1−tan22t=1+x21−x2 .
∫1+sint+costdt= ∫(1+x2)(1+1+x22x+1+x21−x2)2dx= ∫(2+2x)2dx= ∫(1+x)dx=ln∣1+x∣+C=ln∣∣1+tan2t∣∣+C .
(C is constant).
2)∫5+4cosydy
Let's apply the change of variables:
tan2y=x; 2cos22ydy=dx ; 21(1+tan22y)dy=dx ; dy=1+x22dx .
cosy=1+tan22y1−tan22y=1+x21−x2 .
∫5+4cosydy=∫(1+x2)(5+4⋅1+x21−x2)2dx= ∫9+x22dx=32∫1+9x23dx= 32arctan3x+C=32arctan(31tan2y)+C .
(C is constant).
Answer:
1)∫1+sint+costdt=ln∣∣1+tan2t∣∣+C ;
2)∫5+4cosydy=32arctan(31tan2y)+C .
Comments