Integration by Partial Fractions
1.) ∫dy/(5 secy+4)
2.) ∫dx/(3-5Sin2x) from 0 to π/4
"1)\n\\int\\frac{dy}{5secy+4)}\\newline\nfrom trigonometry, secy=\\frac{tan^2(\\frac{y}{2})}{tan(\\frac{y}{2})+1}\\newline\ntherefore,\\newline\n\\int\\frac{dy}{(5\\frac{tan^2(\\frac{y}{2})}{tan(\\frac{y}{2})+1}+4)}\\newline\n\\text{now, let}u=tan(\\frac{y}{2}) \\implies y=2tan^{-1}(u)\\implies dy=(\\frac{2}{1+u^2})du\\newline\n\\text{then, by substitute and arrange the terms}\\newline\n\\int\\frac{dy}{5secy+4)}=\\int \\frac{-2(u^2-1)}{(u^2+1)(u^2+9)}du\\newline\n\\text{by partial fraction}\\newline\n=-2\\int((\\frac{-1}{4(u^2+1)})+(\\frac{5}{4(u^2+9)}))du\\newline\n=-2(\\frac{-tan^{-1}u}{4}+\\frac{5}{3\u00d74}tan^{-1}\\frac{u}{3})+C\\newline\n=(\\frac{tan^{-1}u}{2}-\\frac{5}{6}tan^{-1}\\frac{u}{3})+C\\newline\n=(\\frac{tan^{-1}(tan(\\frac{y}{2}))}{2}-\\frac{5}{6}tan^{-1}(\\frac{tan(\\frac{y}{2})}{3}))+C\\newline\n=\\frac{y}{4}-\\frac{5}{6}tan^{-1}(\\frac{tan(\\frac{y}{2})}{3}))+C\\newline\n2)\\newline\n\\int_{0}^{\\frac{\\pi}{4}} \\frac{dx}{3-5sin2x}\n=-\\int_{0}^{\\frac{\\pi}{4}} \\frac{dx}{5sin(2x)-3}\\newline\nput\\space y=2x\\implies dx=\\frac{dy}{2}\\newline\n=-\\frac{1}{2}\\int \\frac{dy}{5sin(y)-3}=\\newline\nfrom \\space trigonometry, siny=2\\frac{tan(\\frac{y}{2})}{tan^2(\\frac{y}{2})+1}\\newline\n=-\\frac{1}{2}\\int \\frac{dy}{5(2\\frac{tan(\\frac{y}{2})}{tan^2(\\frac{y}{2})+1})-3}\\newline\n=-\\frac{1}{2}\\int \\frac{dy}{10(\\frac{tan(\\frac{y}{2})}{tan^2(\\frac{y}{2})+1})-3}=\\newline\n\\text{now, let}u=tan(\\frac{y}{2}) \\implies y=2tan^{-1}(u)\\implies dy=(\\frac{2}{1+u^2})du\\newline\n=-\\frac{1}{2}\\int \\frac{-2}{3u^2-10u+3}du\\newline\n=\\int \\frac{1}{3u^2-10u+3}du\\newline\n=\\int\\frac{1}{(u-3)(3u-1)}du\\newline\n\\text{by partial fraction}\\newline\n=\\int\\frac{1}{8(u-3)}-\\frac{3}{8(3u-1)}du\\newline\n=\\frac{ln(u-3)}{8}-\\frac{ln(3u-1)}{8}\\newline\n=\\frac{ln(tan(\\frac{y}{2})-3)}{8}-\\frac{ln(3tan(\\frac{y}{2})-1)}{8}\\newline\n=\\frac{ln(tan(\\frac{2x}{2})-3)}{8}-\\frac{ln(3tan(\\frac{2x}{2})-1)}{8}\\newline\n=\\frac{ln(tan(x)-3)}{8}-\\frac{ln(3tan(x)-1)}{8}\\newline\nTherefore,\\newline\n\\int_{0}^{\\frac{\\pi}{4}} \\frac{dx}{3-5sin2x}=[\\frac{ln(tan(x)-3)}{8}-\\frac{ln(3tan(x)-1)}{8}]_{0}^{\\frac{\\pi}{4}}\\newline\n=-\\frac{ln(3)}{8}"
Comments
Leave a comment