1)∫5secy+4)dyfromtrigonometry,secy=tan(2y)+1tan2(2y)therefore,∫(5tan(2y)+1tan2(2y)+4)dynow, letu=tan(2y)⟹y=2tan−1(u)⟹dy=(1+u22)duthen, by substitute and arrange the terms∫5secy+4)dy=∫(u2+1)(u2+9)−2(u2−1)duby partial fraction=−2∫((4(u2+1)−1)+(4(u2+9)5))du=−2(4−tan−1u+3×45tan−13u)+C=(2tan−1u−65tan−13u)+C=(2tan−1(tan(2y))−65tan−1(3tan(2y)))+C=4y−65tan−1(3tan(2y)))+C2)∫04π3−5sin2xdx=−∫04π5sin(2x)−3dxput y=2x⟹dx=2dy=−21∫5sin(y)−3dy=from trigonometry,siny=2tan2(2y)+1tan(2y)=−21∫5(2tan2(2y)+1tan(2y))−3dy=−21∫10(tan2(2y)+1tan(2y))−3dy=now, letu=tan(2y)⟹y=2tan−1(u)⟹dy=(1+u22)du=−21∫3u2−10u+3−2du=∫3u2−10u+31du=∫(u−3)(3u−1)1duby partial fraction=∫8(u−3)1−8(3u−1)3du=8ln(u−3)−8ln(3u−1)=8ln(tan(2y)−3)−8ln(3tan(2y)−1)=8ln(tan(22x)−3)−8ln(3tan(22x)−1)=8ln(tan(x)−3)−8ln(3tan(x)−1)Therefore,∫04π3−5sin2xdx=[8ln(tan(x)−3)−8ln(3tan(x)−1)]04π=−8ln(3)
Comments