Question #186234

Integration by Partial Fractions


∫dy/(5+4cosy)


1
Expert's answer
2021-05-07T09:12:44-0400

Given that (15+4cosy)dySubstituting cos(y)=1tan2y21+tan2y2we get(15+4cosy)dy=(15+4(1tan2y21+tan2y2))dy=(1+tan2y25(1+tan2y2)+4(1tan2y2))dy=(1+tan2y25+5tan2y2+44tan2y2)dy=(1+tan2y29+tan2y2)dySubstituting u=tany2& (1+tan2y2)dy=2duwe get(29+u2)du=23tan1(u3)+C,(1a2+x2)dx=1atan1(xa)where C is a constant of integration.Substituting back u=tany2 ,we get(15+4cosy)dy=23tan1(tany23)+C(15+4cosy)dy=23tan1(13tany2)+CGiven \ that \ \int(\frac{1}{5+4cosy})dy\\ Substituting \ cos(y)= \frac{1-tan^2{\frac{y}{2}}}{1+tan^2{\frac{y}{2}}}\\ we \ get \int(\frac{1}{5+4cosy})dy=\int(\frac{1}{5+4(\frac{1-tan^2{\frac{y}{2}}}{1+tan^2{\frac{y}{2}}})})dy\\ =\int(\frac{1+tan^2{\frac{y}{2}}}{5(1+tan^2{\frac{y}{2}})+4({1-tan^2{\frac{y}{2}}})})dy\\ =\int(\frac{1+tan^2{\frac{y}{2}}}{5+5tan^2{\frac{y}{2}}+4-4tan^2{\frac{y}{2}}})dy =\int(\frac{1+tan^2{\frac{y}{2}}}{9+tan^2{\frac{y}{2}}})dy\\ Substituting \ u=tan{\frac{y}{2}} \& \ (1+tan^2{\frac{y}{2}})dy=2du\\ we \ get \int(\frac{2}{9+u^2})du=\frac{2}{3}tan^{-1}(\frac{u}{3})+C,\\ \because \int(\frac{1}{a^2+x^2})dx=\frac{1}{a}tan^{-1}(\frac{x}{a})\\where \ C \ is \ a \ constant \ of \ integration.\\ Substituting \ back \ u=tan{\frac{y}{2}} \ , we \ get \\ \int(\frac{1}{5+4cosy})dy=\frac{2}{3}tan^{-1}(\frac{tan{\frac{y}{2}}}{3})+C\\ \therefore \int(\frac{1}{5+4cosy})dy=\frac{2}{3}tan^{-1}(\frac{1}{3}tan{\frac{y}{2}})+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS