Integration by Partial Fractions
∫dy/(5+4cosy)
"Given \\ that \\ \\int(\\frac{1}{5+4cosy})dy\\\\\nSubstituting \\ cos(y)= \\frac{1-tan^2{\\frac{y}{2}}}{1+tan^2{\\frac{y}{2}}}\\\\\nwe \\ get \\int(\\frac{1}{5+4cosy})dy=\\int(\\frac{1}{5+4(\\frac{1-tan^2{\\frac{y}{2}}}{1+tan^2{\\frac{y}{2}}})})dy\\\\\n=\\int(\\frac{1+tan^2{\\frac{y}{2}}}{5(1+tan^2{\\frac{y}{2}})+4({1-tan^2{\\frac{y}{2}}})})dy\\\\\n=\\int(\\frac{1+tan^2{\\frac{y}{2}}}{5+5tan^2{\\frac{y}{2}}+4-4tan^2{\\frac{y}{2}}})dy\n=\\int(\\frac{1+tan^2{\\frac{y}{2}}}{9+tan^2{\\frac{y}{2}}})dy\\\\\nSubstituting \\ u=tan{\\frac{y}{2}} \\& \\ (1+tan^2{\\frac{y}{2}})dy=2du\\\\\nwe \\ get \\int(\\frac{2}{9+u^2})du=\\frac{2}{3}tan^{-1}(\\frac{u}{3})+C,\\\\\n \\because \\int(\\frac{1}{a^2+x^2})dx=\\frac{1}{a}tan^{-1}(\\frac{x}{a})\\\\where \\ C \\ is \\ a \\ constant \\ of \\ integration.\\\\\nSubstituting \\ back \\ u=tan{\\frac{y}{2}} \\ , we \\ get \\\\\n\\int(\\frac{1}{5+4cosy})dy=\\frac{2}{3}tan^{-1}(\\frac{tan{\\frac{y}{2}}}{3})+C\\\\\n\\therefore \\int(\\frac{1}{5+4cosy})dy=\\frac{2}{3}tan^{-1}(\\frac{1}{3}tan{\\frac{y}{2}})+C"
Comments
Leave a comment