Given that ∫(5+4cosy1)dySubstituting cos(y)=1+tan22y1−tan22ywe get∫(5+4cosy1)dy=∫(5+4(1+tan22y1−tan22y)1)dy=∫(5(1+tan22y)+4(1−tan22y)1+tan22y)dy=∫(5+5tan22y+4−4tan22y1+tan22y)dy=∫(9+tan22y1+tan22y)dySubstituting u=tan2y& (1+tan22y)dy=2duwe get∫(9+u22)du=32tan−1(3u)+C,∵∫(a2+x21)dx=a1tan−1(ax)where C is a constant of integration.Substituting back u=tan2y ,we get∫(5+4cosy1)dy=32tan−1(3tan2y)+C∴∫(5+4cosy1)dy=32tan−1(31tan2y)+C
Comments