Question #186229

Integration by Partial Fractions


1.) ∫4dx/(x^4-1)


2.) ∫8dx/x(x^2+2)^2



1
Expert's answer
2021-05-07T09:12:31-0400

1) Solution:

4x41=4(x1)(x+1)(x2+1)=Ax1+Bx+1+Cx2+1=A(x+1)(x2+1)+B(x1)(x2+1)+C(x1)(x+1)(x1)(x+1)(x2+1)=A(x3+x2+x+1)+B(x3x2+x1)+C(x21)(x1)(x+1)(x2+1)=x3(A+B)+x2(AB+C)+x(A+B)+(ABC)(x1)(x+1)(x2+1)\frac{4}{x^4-1} = \frac{4}{(x-1)(x+1)(x^2+1)} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{C}{x^2+1} = \newline \frac{A(x+1)(x^2+1) + B(x-1)(x^2+1) + C(x-1)(x+1)}{(x-1)(x+1)(x^2+1)} = \newline \frac{A(x^3+x^2+x+1) + B(x^3-x^2+x-1) + C(x^2-1)}{(x-1)(x+1)(x^2+1)} = \newline \frac{x^3(A+B)+x^2(A-B+C)+x(A+B)+(A-B-C)}{(x-1)(x+1)(x^2+1)}

from nominator

A+B=0AB+C=0A+B=0ABC=4A+B=0 \newline A-B+C=0 \newline A+B=0 \newline A-B-C=4

solution of this system is: A=1 B=-1 C=-2, so

4x41=1x11x+12x2+1\frac{4}{x^4-1} = \frac{1}{x-1} - \frac{1}{x+1} - \frac{2}{x^2+1}

and

4x41dx=1x1dx1x+1dx22x2+1dx=lnx1lnx+12arctanx+C\int \frac{4}{x^4-1} dx = \int \frac{1}{x-1} dx - \int \frac{1}{x+1} dx - 2 \int \frac{2}{x^2+1} dx = \newline \ln |x-1| - \ln |x+1| - 2 \arctan x + C


2) Solution:

8x(x2+2)2dx=8xx2(x2+2)2dx=4x2(x2+2)2d(x2)\int \frac{8}{x(x^2+2)^2} dx = \int \frac{8x}{x^2(x^2+2)^2} dx = \int \frac{4}{x^2(x^2+2)^2} d(x^2)

Using substitution s=x2s=x^2 and denoting s to x for convenience we will receive: 4x(x+2)2dx\int \frac{4}{x(x+2)^2} dx

4x(x+2)2=Ax+Bx+2+C(x+2)2=A(x+2)2+Bx(x+2)+Cxx(x+2)2=x2(A+B)+x(4A+2B+C)+4Ax(x+2)2\frac{4}{x(x+2)^2} = \frac{A}{x} + \frac{B}{x+2} + \frac{C}{(x+2)^2} = \frac{A(x+2)^2 + Bx(x+2) + Cx}{x(x+2)^2} = \frac{x^2(A + B) + x(4A + 2B + C) + 4A}{x(x+2)^2}

from nominator

A+B=04A+2B+C=04A=8A+B=0 \newline 4A + 2B + C=0 \newline 4A=8

solution of this system is: A=2 B=-2 C=-4, so

4x(x+2)2=2x2x+24(x+2)2\frac{4}{x(x+2)^2} = \frac{2}{x} - \frac{2}{x+2} - \frac{4}{(x+2)^2}

and

4x(x+2)2dx=2xdx2x+2dx4(x+2)2dx=2lnx2lnx+2+4x+2+C\int \frac{4}{x(x+2)^2} dx = \int \frac{2}{x} dx - \int \frac{2}{x+2} dx - \int \frac{4}{(x+2)^2} dx = 2 \ln |x| - 2 \ln |x+2| + \frac{4}{x+2} + C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS