Integration by Partial Fractions
1.) ∫4dx/(x^4-1)
2.) ∫8dx/x(x^2+2)^2
1) Solution:
"\\frac{4}{x^4-1} = \\frac{4}{(x-1)(x+1)(x^2+1)} = \\frac{A}{x-1} + \\frac{B}{x+1} + \\frac{C}{x^2+1} = \\newline\n\\frac{A(x+1)(x^2+1) + B(x-1)(x^2+1) + C(x-1)(x+1)}{(x-1)(x+1)(x^2+1)} = \\newline\n\\frac{A(x^3+x^2+x+1) + B(x^3-x^2+x-1) + C(x^2-1)}{(x-1)(x+1)(x^2+1)} = \\newline\n\\frac{x^3(A+B)+x^2(A-B+C)+x(A+B)+(A-B-C)}{(x-1)(x+1)(x^2+1)}"
from nominator
"A+B=0 \\newline\nA-B+C=0 \\newline\nA+B=0 \\newline\nA-B-C=4"
solution of this system is: A=1 B=-1 C=-2, so
"\\frac{4}{x^4-1} = \\frac{1}{x-1} - \\frac{1}{x+1} - \\frac{2}{x^2+1}"
and
"\\int \\frac{4}{x^4-1} dx = \\int \\frac{1}{x-1} dx - \\int \\frac{1}{x+1} dx - 2 \\int \\frac{2}{x^2+1} dx = \\newline\n\\ln |x-1| - \\ln |x+1| - 2 \\arctan x + C"
2) Solution:
"\\int \\frac{8}{x(x^2+2)^2} dx = \n\\int \\frac{8x}{x^2(x^2+2)^2} dx = \n\\int \\frac{4}{x^2(x^2+2)^2} d(x^2)"
Using substitution "s=x^2" and denoting s to x for convenience we will receive: "\\int \\frac{4}{x(x+2)^2} dx"
"\\frac{4}{x(x+2)^2} = \\frac{A}{x} + \n\\frac{B}{x+2} + \\frac{C}{(x+2)^2} =\n\\frac{A(x+2)^2 + Bx(x+2) + Cx}{x(x+2)^2} =\n\\frac{x^2(A + B) + x(4A + 2B + C) + 4A}{x(x+2)^2}"
from nominator
"A+B=0 \\newline\n4A + 2B + C=0 \\newline\n4A=8"
solution of this system is: A=2 B=-2 C=-4, so
"\\frac{4}{x(x+2)^2} = \\frac{2}{x} - \n\\frac{2}{x+2} - \\frac{4}{(x+2)^2}"
and
"\\int \\frac{4}{x(x+2)^2} dx =\n\\int \\frac{2}{x} dx - \\int \\frac{2}{x+2} dx - \\int \\frac{4}{(x+2)^2} dx = \n2 \\ln |x| - 2 \\ln |x+2| + \\frac{4}{x+2} + C"
Comments
Leave a comment