1) Solution:
x4−14=(x−1)(x+1)(x2+1)4=x−1A+x+1B+x2+1C=(x−1)(x+1)(x2+1)A(x+1)(x2+1)+B(x−1)(x2+1)+C(x−1)(x+1)=(x−1)(x+1)(x2+1)A(x3+x2+x+1)+B(x3−x2+x−1)+C(x2−1)=(x−1)(x+1)(x2+1)x3(A+B)+x2(A−B+C)+x(A+B)+(A−B−C)
from nominator
A+B=0A−B+C=0A+B=0A−B−C=4
solution of this system is: A=1 B=-1 C=-2, so
x4−14=x−11−x+11−x2+12
and
∫x4−14dx=∫x−11dx−∫x+11dx−2∫x2+12dx=ln∣x−1∣−ln∣x+1∣−2arctanx+C
2) Solution:
∫x(x2+2)28dx=∫x2(x2+2)28xdx=∫x2(x2+2)24d(x2)
Using substitution s=x2 and denoting s to x for convenience we will receive: ∫x(x+2)24dx
x(x+2)24=xA+x+2B+(x+2)2C=x(x+2)2A(x+2)2+Bx(x+2)+Cx=x(x+2)2x2(A+B)+x(4A+2B+C)+4A
from nominator
A+B=04A+2B+C=04A=8
solution of this system is: A=2 B=-2 C=-4, so
x(x+2)24=x2−x+22−(x+2)24
and
∫x(x+2)24dx=∫x2dx−∫x+22dx−∫(x+2)24dx=2ln∣x∣−2ln∣x+2∣+x+24+C
Comments