1.) ∫z+z3dz
Partial fraction can be written as,
f(z)=z1−z2+1z
f(z)=z1−21(z+i)1+21(z−i)1
Integrating both sides,
∫f(z)dz=logz−21log(z+i)+21log(z−i)+logC
b.) ∫x2(x2+1)2x+1dx
Performing partial fraction decomposition:
x2(x2+1)2x+1=xA+x2B+x2+1Cx+D
2x+1=x2(Cx+D)+x(x2+1)A+(x2+1)B
2x+1=x3(A+C)+x2(B+D)+xA+B
After equating coefficients we get,
A=2,B=1,C=−2andD=−1
Hence,
=∫(x2+1−2x−1+x2+x21)dx
Apply linearity:
=−∫x2+12x+1dx+2∫x1dx+∫x21dx
=−∫x2+12xdx−∫x2+11dx+2∫x1dx+∫x21dx
=−log(x2+1)−tan−1x+2logx−x1+C
Comments
Leave a comment