Integration by Partial Fractions
1.) ∫dz/z+z^3
2.) ∫(2s+1)ds/s^2(s^2+1)
1.) "\\int \\dfrac{dz}{z+z^3}"
Partial fraction can be written as,
"f(z) = \\dfrac{1}{z} - \\dfrac{z}{z^2+1}"
"f(z) = \\dfrac{1}{z} - \\dfrac{1}{2} \\dfrac{1}{(z+i)}+ \\dfrac{1}{2} \\dfrac{1}{(z-i)}"
Integrating both sides,
"\\int f(z)dz = logz - \\dfrac{1}{2}log(z+i) + \\dfrac{1}{2}log(z-i) + logC"
b.) "\\int \\dfrac{2x+1}{x^2(x^2+1)} dx"
Performing partial fraction decomposition:
"\\dfrac{2x+1}{x^2(x^2+1)} = \\dfrac{A}{x} + \\dfrac{B}{x^2}+ \\dfrac{Cx+D}{x^2+1}"
"2x+1 = x^2(Cx+D) + x(x^2+1)A + (x^2+1)B"
"2x+1 = x^3(A+C) + x^2(B+D) + xA+B"
After equating coefficients we get,
"A= 2 , B=1 ,C = -2 \\hspace{2mm}and \\hspace{2mm} D = -1"
Hence,
"= \\int (\\dfrac{-2x-1}{x^2+1}+ \\dfrac{2}{x}+ \\dfrac{1}{x^2})dx"
Apply linearity:
"= -\\int \\dfrac{2x+1}{x^2+1}dx + 2\\int \\dfrac{1}{x}dx + \\int \\dfrac{1}{x^2}dx"
"= -\\int \\dfrac{2x}{x^2+1}dx - \\int \\dfrac{1}{x^2+1}dx + 2\\int \\dfrac{1}{x}dx + \\int \\dfrac{1}{x^2}dx"
"= -log(x^2+1) - tan^{-1}x + 2logx - \\dfrac{1}{x}+ C"
Comments
Leave a comment