Answer to Question #186226 in Calculus for Phyroe

Question #186226

Integration by Partial Fractions


1.) ∫dz/z+z^3


2.) ∫(2s+1)ds/s^2(s^2+1)



1
Expert's answer
2021-05-07T14:37:28-0400

1.) dzz+z3\int \dfrac{dz}{z+z^3}


Partial fraction can be written as,


f(z)=1zzz2+1f(z) = \dfrac{1}{z} - \dfrac{z}{z^2+1}


f(z)=1z121(z+i)+121(zi)f(z) = \dfrac{1}{z} - \dfrac{1}{2} \dfrac{1}{(z+i)}+ \dfrac{1}{2} \dfrac{1}{(z-i)}


Integrating both sides,


f(z)dz=logz12log(z+i)+12log(zi)+logC\int f(z)dz = logz - \dfrac{1}{2}log(z+i) + \dfrac{1}{2}log(z-i) + logC


b.) 2x+1x2(x2+1)dx\int \dfrac{2x+1}{x^2(x^2+1)} dx


Performing partial fraction decomposition:


2x+1x2(x2+1)=Ax+Bx2+Cx+Dx2+1\dfrac{2x+1}{x^2(x^2+1)} = \dfrac{A}{x} + \dfrac{B}{x^2}+ \dfrac{Cx+D}{x^2+1}


2x+1=x2(Cx+D)+x(x2+1)A+(x2+1)B2x+1 = x^2(Cx+D) + x(x^2+1)A + (x^2+1)B


2x+1=x3(A+C)+x2(B+D)+xA+B2x+1 = x^3(A+C) + x^2(B+D) + xA+B


After equating coefficients we get,


A=2,B=1,C=2andD=1A= 2 , B=1 ,C = -2 \hspace{2mm}and \hspace{2mm} D = -1


Hence,


=(2x1x2+1+2x+1x2)dx= \int (\dfrac{-2x-1}{x^2+1}+ \dfrac{2}{x}+ \dfrac{1}{x^2})dx


Apply linearity:


=2x+1x2+1dx+21xdx+1x2dx= -\int \dfrac{2x+1}{x^2+1}dx + 2\int \dfrac{1}{x}dx + \int \dfrac{1}{x^2}dx


=2xx2+1dx1x2+1dx+21xdx+1x2dx= -\int \dfrac{2x}{x^2+1}dx - \int \dfrac{1}{x^2+1}dx + 2\int \dfrac{1}{x}dx + \int \dfrac{1}{x^2}dx


=log(x2+1)tan1x+2logx1x+C= -log(x^2+1) - tan^{-1}x + 2logx - \dfrac{1}{x}+ C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment