Question #185853

Differentiate with respect to x , x³-2x from the first principle


1
Expert's answer
2021-04-27T13:46:56-0400

(i) f(x)=x

By first principle-

f(x)=limh0f(x+h)f(x)h=limh0x+hxh=limh0hh=1f'(x)=lim_{h\rightarrow 0}\dfrac{f(x+h)-f(x)}{h}=lim_{h\rightarrow 0}\dfrac{x+h-x}{h}=lim_{h\rightarrow 0}\dfrac{h}{h}=1


(ii) f(x)=x32xf(x)=x^3-2x


By first principle-


 f(x)=limh0f(x+h)f(x)hf'(x)=lim_{h\rightarrow 0}\dfrac{f(x+h)-f(x)}{h}


=limh0(x+h)32(x+h)(x32x)h=lim_{h\rightarrow 0}\dfrac{(x+h)^3-2(x+h)-(x^3-2x)}{h}


=limh0(x3+h3+3x2h+3xh22x2hx32x)h=lim_{h\rightarrow 0}\dfrac{(x^3+h^3+3x^2h+3xh^2-2x-2h-x^3-2x)}{h}


=limh0(h3+3x2h+3xh22h)h=lim_{h\rightarrow 0}\dfrac{(h^3+3x^2h+3xh^2-2h)}{h}


=limh0h(h2+3x2+3xh2)h=lim_{h\rightarrow 0}\dfrac{h(h^2+3x^2+3xh-2)}{h}


=limh0(h2+3x2+3xh2)=3x22=lim_{h\rightarrow 0}(h^2+3x^2+3xh-2)=3x^2-2


Hence f(x)=3x22f'(x)=3x^2-2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS