(i) f(x)=x
By first principle-
f′(x)=limh→0hf(x+h)−f(x)=limh→0hx+h−x=limh→0hh=1
(ii) f(x)=x3−2x
By first principle-
f′(x)=limh→0hf(x+h)−f(x)
=limh→0h(x+h)3−2(x+h)−(x3−2x)
=limh→0h(x3+h3+3x2h+3xh2−2x−2h−x3−2x)
=limh→0h(h3+3x2h+3xh2−2h)
=limh→0hh(h2+3x2+3xh−2)
=limh→0(h2+3x2+3xh−2)=3x2−2
Hence f′(x)=3x2−2
Comments