Differentiate with respect to x , x³-2x from the first principle
(i) f(x)=x
By first principle-
"f'(x)=lim_{h\\rightarrow 0}\\dfrac{f(x+h)-f(x)}{h}=lim_{h\\rightarrow 0}\\dfrac{x+h-x}{h}=lim_{h\\rightarrow 0}\\dfrac{h}{h}=1"
(ii) "f(x)=x^3-2x"
By first principle-
"f'(x)=lim_{h\\rightarrow 0}\\dfrac{f(x+h)-f(x)}{h}"
"=lim_{h\\rightarrow 0}\\dfrac{(x+h)^3-2(x+h)-(x^3-2x)}{h}"
"=lim_{h\\rightarrow 0}\\dfrac{(x^3+h^3+3x^2h+3xh^2-2x-2h-x^3-2x)}{h}"
"=lim_{h\\rightarrow 0}\\dfrac{(h^3+3x^2h+3xh^2-2h)}{h}"
"=lim_{h\\rightarrow 0}\\dfrac{h(h^2+3x^2+3xh-2)}{h}"
"=lim_{h\\rightarrow 0}(h^2+3x^2+3xh-2)=3x^2-2"
Hence "f'(x)=3x^2-2"
Comments
Leave a comment