𝑓(𝑥) = 𝑥
3 − 12𝑥, 𝑥 ∈ [0, 4]
Ans:- f(x)=x3−12xf(x)=x^3-12xf(x)=x3−12x , 𝑥∈[0,4]𝑥 ∈ [0, 4]x∈[0,4]
⇒\Rightarrow⇒ f(x)=x(x2−12)f(x)=x(x^2-12)\\f(x)=x(x2−12)
⇒f(x)=x(x+23)(x−23)\Rightarrow f(x)=x(x+2\sqrt{3})(x-2\sqrt3)⇒f(x)=x(x+23)(x−23)
⇒f(x)=x(x+3.4641)(x−3.4641)\Rightarrow f(x)=x(x+3.4641)(x-3.4641)⇒f(x)=x(x+3.4641)(x−3.4641)
We know that xxx lies in the interval between 𝑥∈[0,4]𝑥 ∈ [0, 4]x∈[0,4].
Hence The values of xxx for which f(x)f(x)f(x) should be zero is 0,3.46410, 3.46410,3.4641 and
f′(x)=3x2−12f'(x)=3x^2-12f′(x)=3x2−12
⇒\Rightarrow⇒ f′(0)=−12<0f'(0)=-12<0f′(0)=−12<0 so at x=0x=0x=0 the slope of the f(x) is increasing
⇒f′(3.4641)=−5.5692<0\Rightarrow f'(3.4641)=-5.5692<0⇒f′(3.4641)=−5.5692<0 so at x=3.4641x=3.4641x=3.4641 the slope of the f(x)f(x)f(x) is increasing
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments