Answer to Question #185839 in Calculus for kaye

Question #185839

An open box is to be made with a capacity of 36 000 cu cm. Find the least material

used in making the box if the length is twice its width.


1
Expert's answer
2021-05-07T10:11:47-0400

Answer:-

l=lengthwidth=wh=heightl=length\\width = w\\h=height


given l = 2w


Volume(V)=l×w×hVolume(V) = l\times w \times h

V=2w×w×hV=2w2×h36000=2w2×hnow for the materialArea=lw+2wh+2lh=2w2+36000w+72000w=2w2+108000wnowby calculusd(area)dw=4w108000w2nowd(area)dw=0clearly w=30cmand now l=2w so , l=60cm h=20cmArea=lw+2wh+2lhArea=5400 sq cmanswerV = 2w\times w \times h \\ V = 2w^2\times h \\36000=2w^2\times h\\ now \space for \space the \space material \\ Area = lw + 2wh + 2lh \\ = 2w^2 + {36000\over w} + {72000\over w} \\ =2w^2+{108000\over w }\\ now\\ by\space calculus \\ \frac{d(area)}{dw} = 4w - {108000\over w^2}\\ now\\ \frac{d(area)}{dw}=0\\ clearly \ w = 30 cm \\ and \ now \ l=2w \ so \ , \ l=60 cm \ h = 20cm\\ Area = lw + 2wh + 2lh \\ \boxed{Area = 5400 \ sq \ cm}answer


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment