An open box is to be made with a capacity of 36 000 cu cm. Find the least material
used in making the box if the length is twice its width.
Answer:-
"l=length\\\\width = w\\\\h=height"
given l = 2w
"Volume(V) = l\\times w \\times h"
"V = 2w\\times w \\times h \\\\\nV = 2w^2\\times h\n\\\\36000=2w^2\\times h\\\\\nnow \\space for \\space the \\space material \\\\\n\nArea = lw + 2wh + 2lh \\\\\n= 2w^2 + {36000\\over w} + {72000\\over w}\n\\\\\n=2w^2+{108000\\over w }\\\\\nnow\\\\\nby\\space calculus \\\\\n\\frac{d(area)}{dw} = 4w - {108000\\over w^2}\\\\\nnow\\\\\n\\frac{d(area)}{dw}=0\\\\\nclearly \\ w = 30 cm\n\\\\\nand \\ now \\ l=2w \\ so \\ , \\ l=60 cm \\ h = 20cm\\\\\n\nArea = lw + 2wh + 2lh \\\\\n\\boxed{Area = 5400 \\ sq \\ cm}answer"
Comments
Leave a comment