Integration by Partial Fractions
1.) ∫(3x^2-x+1)/(x^3-x^2)dx
2.) ∫(t^2dt)/(t+1)^3
(1)
"\u222b\\dfrac{(3x^2-x+1)}{(x^3-x^2)}dx\\\\[9pt]=\\dfrac{3x^2-2x+x-1+2}{x^3-x^2}dx\\\\[9pt]=\\dfrac{3x^2-2x}{x^3-x^2}dx+\\dfrac{x-1}{x^2(x-1)}dx+\\dfrac{2}{x^2(x-1)}dx\\\\[9pt]"
Let "x^3-x^2=t"
"\\Rightarrow (3x^2-2x)dx=dt" and using partial fraction in the third term-
"=\\dfrac{dt}{t}+\\dfrac{1}{x^2}dx+\\dfrac{2}{x-1}dx-\\dfrac{2}{x}dx-\\dfrac{2}{x^2}dx\\\\[9pt]=lnt-\\dfrac{1}{x}+2ln(x-1)-2lnx+\\dfrac{2}{x}+C\\\\[9pt]=ln(x^3-x^2)+\\dfrac{1}{x}+2ln\\dfrac{x-1}{x}+C"
(2)
"\u222b\\dfrac{(t^2)}{(t+1)^3}dt\\\\[9pt]=\\dfrac{(t+1-1)^2}{(t+1)^3}dt\\\\[9pt]=\\dfrac{(t+1)^2+1-2(t+1)}{(t+1)^3}dt\\\\[9pt]=\\dfrac{1}{t+1}dt+\\dfrac{1}{(t+1)^3}dt-\\dfrac{2}{(t+1)^2}dt\\\\[9pt]=ln(t+1)-\\dfrac{1}{2(t+1)^2}+\\dfrac{2}{(t+1)}+C"
Comments
Leave a comment