an = (nn2)/(2n)!
an+1 = ((n+1)(n+1)2)/(2(n+1))!
an+1/an = ((n+1)(n+1)2)/(2(n+1))!)/((nn2)/(2n)!) =
= ((2n)!∗((n+1)(n+1)2) ) / ((nn2)∗(2n+2)!) =
= ((n+1)n2+2n+1)/((2n+1)∗(2n+2)∗(nn2)) =
=((n+1)n2+2n) /(2∗(2n+1)∗ (nn2)) =
=(((n+1)n2+2n−1)∗(1+1/n)/(2∗(2+1/n)∗(nn2))
Let's calculate the limit an+1/an
lim (n→ +∞) (((n+1)n2+2n−1)∗(1+1/n)/2∗(2+1/n)∗ (nn2) =
=lim (n→ +∞ ) (((n+1)n2+2n−1)/(4∗(nn2)) = +∞
Thats mean that ratio is increasing
Note: (2n)!/(2n+2)!=1/((2n+1)∗(2n+2))
Comments