Question #186156

1. Use the ratio an+1/an to show that the given siquence {an} is strictly increasing or strictly decreasing.

{nn^2/(2n)!}n=1+infinity

1
Expert's answer
2021-05-16T23:05:02-0400

a= (nn2)\left(n^{\smash{n^2}}\right)/(2n)!/(2n)!

an+1 = ((n+1)(n+1)2)/(2(n+1))!\left((n+1)^{\smash{(n+1)^2}}\right)/(2(n+1))!


an+1/an = ((n+1)(n+1)2)/(2(n+1))!)/\left((n+1)^{\smash{(n+1)^2}}\right) / (2(n+1))!) /((nn2)/(2n)!)\left(n^{\smash{n^2}}\right)/(2n)!) =

= ((2n)!((n+1)(n+1)2)((2n)! *\left((n+1)^{\smash{(n+1)^2}}\right) ) / ((nn2)(2n+2)!)\left(n^{\smash{n^2}}\right) * (2n+2)!) =

= ((n+1)n2+2n+1)/((2n+1)(2n+2)\left((n+1)^{\smash{n^2+2n+1}}\right) / ((2n+1)*(2n+2)*(nn2))\left(n^{\smash{n^2}}\right)) =

=((n+1)n2+2n)\left((n+1)^{\smash{n^2+2n}}\right) /(2(2n+1)/ (2*(2n+1)* (nn2))\left(n^{\smash{n^2}}\right)) =

=(((n+1)n2+2n1)(1+1/n)/(2(2+1/n)\left((n+1)^{\smash{n^2+2n-1}}\right) *(1+1/n)/(2*(2+1/n)*(nn2)\left(n^{\smash{n^2}}\right))


Let's calculate the limit an+1/an

lim\lim (n\to +\infty) (((n+1)n2+2n1)(1+1/n)/2(2+1/n)\left((n+1)^{\smash{n^2+2n-1}}\right)*(1+1/n)/2*(2+1/n)* (nn2)\left(n^{\smash{n^2}}\right) =

=lim\lim (n\to +\infty ) (((n+1)n2+2n1)/(4\left((n+1)^{\smash{n^2+2n-1}}\right) /(4*(nn2)\left(n^{\smash{n^2}}\right)) = +\infty


Thats mean that ratio is increasing


Note: (2n)!/(2n+2)!=1/((2n+1)(2n+2))(2n)! / (2n+2)! = 1/((2n+1)*(2n+2))


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS