Rotate the region bounded by x
=
(
y
−
2
)
2
x=(y−2)2
, the x
x
-axis and the y
y
-axis about the x
x
-axis.
Given, the bounded region
Volume generated by the bounded region about the x-axis="2 \\pi \\int_{a}^{b}y^2(x)dx\\space where \\space x \\space varies \\space from \\space a\\space to\\space b.\\newline\n=2 \\pi \\int_{0}^{4}(2- \\sqrt{x})^2dx\\newline\n=2 \\pi \\int_{0}^{4}(4+x-4 \\sqrt{x})dx\\newline\n=2 \\pi [4x+\\frac{x^2}{2}-8 \\frac{x^{\\frac{3}{2}}}{3}]_{0}^{4}\\newline\n=2\\pi (\\frac{8}{3})\\newline\n=\\frac{16}{3} \\pi\\space units^3"
Thus, the required volume is "\\frac{16}{3} \\pi\\space units^3".
Comments
Leave a comment