Question #186223

Integration by Partial Fractions


1.) ∫dy/(y^2+2y)


2.) ∫(x^3+x+2)/(x^2-1)dx



1
Expert's answer
2021-05-07T12:32:40-0400

(a)

dyy2+2y=dyy(2+y)\int \frac{dy}{y^2+2y}\newline =\int \frac{dy}{y(2+y)}

By partial fraction,

1y(2+y)=Ay+B2+yby solving, we get A=1/2 and B= -1/2\frac{1}{y(2+y)}=\frac{A}{y}+\frac{B}{2+y} \newline \text{by solving, we get A=1/2 and B= -1/2}

dyy2+2y=12(1y12+y)dy=12[logylog(2+y)]=12logy(2+y)\int \frac{dy}{y^2+2y}\newline =\frac{1}{2}\int (\frac{1}{y}-\frac{1}{2+y})dy\newline =\frac{1}{2}[ logy-log(2+y)]\newline =\frac{1}{2} log\frac{y}{(2+y)}


(b)

By using partial fraction and algebraic indentities,

x3+x+2x21=(x+1)(x2x+2)(x+1)(x1)=x2x+2x1=x+2x1\frac{x^3+x+2}{x^2-1}=\frac{(x+1)(x^2-x+2)}{(x+1)(x-1)}=\frac{x^2-x+2}{x-1}=x+\frac{2}{x-1} \newline

Then, the integral

x3+x+2x21dx=(x+2x1)dx=x2+2log(x1)\int \frac{x^3+x+2}{x^2-1}dx=\int (x+\frac{2}{x-1} )dx\newline =x^2+2log(x-1)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS