Integration by Partial Fractions
1.) ∫dy/(y^2+2y)
2.) ∫(x^3+x+2)/(x^2-1)dx
(a)
"\\int \\frac{dy}{y^2+2y}\\newline\n=\\int \\frac{dy}{y(2+y)}"
By partial fraction,
"\\frac{1}{y(2+y)}=\\frac{A}{y}+\\frac{B}{2+y}\n\\newline\n\\text{by solving, we get A=1\/2 and B= -1\/2}"
"\\int \\frac{dy}{y^2+2y}\\newline\n=\\frac{1}{2}\\int (\\frac{1}{y}-\\frac{1}{2+y})dy\\newline\n=\\frac{1}{2}[ logy-log(2+y)]\\newline\n=\\frac{1}{2} log\\frac{y}{(2+y)}"
(b)
By using partial fraction and algebraic indentities,
"\\frac{x^3+x+2}{x^2-1}=\\frac{(x+1)(x^2-x+2)}{(x+1)(x-1)}=\\frac{x^2-x+2}{x-1}=x+\\frac{2}{x-1} \\newline"
Then, the integral
"\\int \\frac{x^3+x+2}{x^2-1}dx=\\int (x+\\frac{2}{x-1} )dx\\newline\n=x^2+2log(x-1)"
Comments
Leave a comment