Question #186230

Integration by Partial Fractions


1.) ∫(8t^3 + 13)dt/(t+2)(4t^2+1)


2.) ∫(5x^2 -3x+ 18)dx/x(9-x^2) from 1 to 2


1
Expert's answer
2021-05-11T13:53:44-0400

Question 1:


Given


8t3+13(4t2+1)(t+2)dt\displaystyle\int \frac{8t^3+13}{(4t^2+1)(t+2)} dt

Since the degree of the numerator is not less than the degree of the denominator, we perform long polynomial division to yield:



8t3+13(t+2)(4t2+1)=2+16t22t+9(4t2+1)(t+2)\frac{8t^3+13}{(t+2)(4t^2+1)} = 2 + \frac{-16t^2-2t+9}{(4t^2+1)(t+2)}

Next, perform partial fraction decomposition on the fraction:



16t22t+9(4t2+1)(t+2)\frac{-16t^2-2t+9}{(4t^2+1)(t+2)}

Let

16t22t+9(4t2+1)(t+2)=At+B4t2+1+Ct+2\frac{-16t^2-2t+9}{(4t^2+1)(t+2)}= \frac{At+B}{4t^2+1} + \frac{C}{t+2}

Upon simplifying,



16t22t+9=(At+B)(t+2)+C(4t2+1)-16t^2-2t+9 = (At+B)(t+2) + C(4t^2+1)

Expand the right-hand side


16t22t+9=t2(A+4C)+t(2A+B)+(2B+C)-16t^2-2t+9 = t^2(A+4C)+t(2A+B)+(2B+C)

On comparing the coefficients of x2x^2 , xx and the constants terms on both sides, we obtain the following system of equations:



16=A+4C;2=2A+B;9=2B+C-16 = A+4C; \quad -2 = 2A+B; \quad 9=2B+C

Solving the three equations simultaneously, we get A=4,B=6A = -4, B=6 and C=3C=-3


Therefore,



16t22t+9(4t2+1)(t+2)=2+64t4t2+1+3t+2\frac{-16t^2-2t+9}{(4t^2+1)(t+2)}= 2 + \frac{6-4t}{4t^2+1} + \frac{-3}{t+2}

And



8t3+13(4t2+1)(t+2)dt=(2+64t4t2+13t+2)dt\displaystyle\int \frac{8t^3+13}{(4t^2+1)(t+2)} dt = \displaystyle\int \left(2 + \frac{6-4t}{4t^2+1} -\frac{3}{t+2} \right) dt

where,



2dt=2t+c1;(3t+2)dt=3lnt+2+c2\displaystyle\int 2\, dt = 2t+c_1 ; \displaystyle\int \left( -\frac{3}{t+2} \right) dt = -3\ln|t+2| + c_2

And


(64t4t2+1)dt=64t2+1dt4t4t2+2dt\displaystyle\int \left( \frac{6-4t}{4t^2+1} \right) dt = \displaystyle\int \frac{6}{4t^2+1} \, dt -\displaystyle\int\frac{4t}{4t^2+2} dt


Let u=2tdu2=dt.u=2t \Rightarrow \frac{du}{2}=dt. Similarly, let v=4t2+1dv2=4tdtv=4t^2+1 \Rightarrow \frac{dv}{2}=4t\,dt


Therefore,



64t2+1dt4t4t2+2dt=62(u2+1)du121vdv\displaystyle\int \frac{6}{4t^2+1} \, dt -\displaystyle\int\frac{4t}{4t^2+2} dt = \displaystyle\int \frac{6}{2(u^2+1)} \, du -\displaystyle\int\frac{1}{2}\frac{1}{v} \,dv

=3tan1(u)12lnv+c3= 3\tan^{-1} (u) -\frac{1}{2} \ln|v| + c_3

=3tan1(2t)12ln4t2+1+c3= 3\tan^{-1} (2t) -\frac{1}{2} \ln|4t^2+1| + c_3

Upon combining the different integral results, we obtain



8t3+13(4t2+1)(t+2)dt=2t+3tan1(2t)12ln4t2+13lnt+2+C\displaystyle\int \frac{8t^3+13}{(4t^2+1)(t+2)} dt = 2t+3\tan^{-1}(2t) -\frac{1}{2}\ln|4t^2+1|-3\ln|t+2| + C

...................................................................................................................................................................................


Question 2:


Given

125x23x+18x(9x2)dx\displaystyle\int_1^2 \frac{5x^2-3x+18}{x(9-x^2)} \, dx

Factor the denominator and simplify the integrand as follows:



5x23x+18x(9x2)=5x2+3x18x(9x2)=5x2+3x18x(x3)(x+3)\frac{5x^2-3x+18}{x(9-x^2)} = \frac{-5x^2+3x-18}{x(9-x^2)} = \frac{-5x^2+3x-18}{x(x-3)(x+3)}

By partial fraction decomposition, let



5x2+3x18x(x3)(x+3)=Ax+Bx3+Cx+3\frac{-5x^2+3x-18}{x(x-3)(x+3)} = \frac{A}{x} + \frac{B}{x-3}+\frac{C}{x+3}



Simplify by multiplying both sides by x(x3)(x+3).x(x-3)(x+3). This gives



5x2+3x18=x2(A+B+C)+3(BC)x9A-5x^2+3x-18 = x^2 (A+B+C) + 3(B-C)x - 9A

On comparing the coefficients of x2x^2 , xx and the constants terms on both sides, we obtain the following system of equations:



5=A+B+C;3=3(BC);18=9A-5 = A+B+C ; \quad 3=3(B-C) ;\quad -18=-9A

Upon solving these three equations simultaneously, we get A=2,B=3A=2, B=-3 and C=4C=-4


Therefore,

5x2+3x18x(x3)(x+3)=2x+3x3+4x+3\frac{-5x^2+3x-18}{x(x-3)(x+3)} = \frac{2}{x} + \frac{-3}{x-3}+\frac{-4}{x+3}

And

125x2+3x18x(x3)(x+3)dx=12(2x+3x3+4x+3)dx\displaystyle\int_1^2\frac{-5x^2+3x-18}{x(x-3)(x+3)} \, dx = \displaystyle\int_1^2 \left(\frac{2}{x} + \frac{-3}{x-3}+\frac{-4}{x+3}\right)\, dx


=[2lnx3lnx34lnx+3]12=\left[ 2\ln|x| -3\ln|x-3| - 4\ln|x+3| \right]^2_1

=[2ln(2)3ln(1)4ln(5)][2ln(1)3ln(2)4ln(4)]=\left[ 2\ln(2) -3\ln(1) - 4\ln(5) \right] - \left[ 2\ln(1) -3\ln(2) - 4\ln(4) \right]

=5ln(2)4ln(5)+4ln(4)=2.5732= 5\ln(2) - 4\ln(5)+ 4\ln(4) = 2.5732


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS