Integration by Partial Fractions
∫dx/(3-5Sin2x) from 0 to π/4
Given integral is-
"\\int_0^{\\frac{\\pi}{4}} \\dfrac{dx}{3-5sin2x}"
Let u=2x, du=2dx
"=\\dfrac{1}{2}\\int_0^{\\frac{\\pi}{2}} \\dfrac{1}{3-5sinu}du"
Let "v=tan(\\dfrac{u}{2})"
SO Above integral becomes-
"=\\dfrac{1}{2}\\int_0^1 \\dfrac{2}{3(1+v^2)-10v}"
"=\\dfrac{1}{2}.2.\\int_0^1\\dfrac{1}{3(1+v^2)-10v}dv"
Taking the partial fraction-
"=\\dfrac{1}{2}.2\\int_0^1[ -\\dfrac{3}{8(3v-1)}+\\dfrac{1}{8(v-3)}]dv"
"=\\dfrac{1}{2}.2.(-\\dfrac{1}{8}ln|3v-1|+\\dfrac{1}{8}ln|v-3|)|_0^1"
"=\\dfrac{1}{2}.2(\\dfrac{1}{8}.ln\\dfrac{v-3}{3v-1})|_0^1"
"=\\dfrac{1}{8}(ln\\dfrac{-2}{2}-ln3)"
"=\\dfrac{ln(-1)-ln3}{8}"
Comments
Leave a comment