Question #186242

Integration by Partial Fractions


∫dx/(3-5Sin2x) from 0 to π/4 


1
Expert's answer
2021-05-07T11:39:52-0400

Given integral is-


0π4dx35sin2x\int_0^{\frac{\pi}{4}} \dfrac{dx}{3-5sin2x}


Let u=2x, du=2dx


=120π2135sinudu=\dfrac{1}{2}\int_0^{\frac{\pi}{2}} \dfrac{1}{3-5sinu}du


Let v=tan(u2)v=tan(\dfrac{u}{2})

      

SO Above integral becomes-


=120123(1+v2)10v=\dfrac{1}{2}\int_0^1 \dfrac{2}{3(1+v^2)-10v}



=12.2.0113(1+v2)10vdv=\dfrac{1}{2}.2.\int_0^1\dfrac{1}{3(1+v^2)-10v}dv


Taking the partial fraction-


=12.201[38(3v1)+18(v3)]dv=\dfrac{1}{2}.2\int_0^1[ -\dfrac{3}{8(3v-1)}+\dfrac{1}{8(v-3)}]dv


=12.2.(18ln3v1+18lnv3)01=\dfrac{1}{2}.2.(-\dfrac{1}{8}ln|3v-1|+\dfrac{1}{8}ln|v-3|)|_0^1


=12.2(18.lnv33v1)01=\dfrac{1}{2}.2(\dfrac{1}{8}.ln\dfrac{v-3}{3v-1})|_0^1


=18(ln22ln3)=\dfrac{1}{8}(ln\dfrac{-2}{2}-ln3)


=ln(1)ln38=\dfrac{ln(-1)-ln3}{8}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS