Given integral is-
∫04π3−5sin2xdx
Let u=2x, du=2dx
=21∫02π3−5sinu1du
Let v=tan(2u)
SO Above integral becomes-
=21∫013(1+v2)−10v2
=21.2.∫013(1+v2)−10v1dv
Taking the partial fraction-
=21.2∫01[−8(3v−1)3+8(v−3)1]dv
=21.2.(−81ln∣3v−1∣+81ln∣v−3∣)∣01
=21.2(81.ln3v−1v−3)∣01
=81(ln2−2−ln3)
=8ln(−1)−ln3
Comments