Improper Integral (Integrals with Infinite Limits)
∫dy/√(y-1) from 5 to ∞
Solution:
can be written as
"y-1 =t \\implies\\,dy=dt\\\\\ny\\rightarrow5; t\\rightarrow4\\ and\\ y\\rightarrow\\infty; t\\rightarrow\\infty\\\\\n\\therefore \\quad \\lim_{a \\to \\infty} \\int_{4}^a \\frac{1}{\\sqrt{t}}\\,dt\\\\""\\lim_{a \\to \\infty} \\lbrack \\lbrack \\frac{t^{-\\frac{1}{2}+1}}{-\\frac{1}{2}+1}\\rbrack _{a}-\\lbrack \\frac{t^{-\\frac{1}{2}+1}}{-\\frac{1}{2}+1}\\rbrack _{4}\\rbrack"
"\\lim_{a \\to \\infty} \\lbrack 2\\sqrt{a} -2\\sqrt{4}\\rbrack \\\\\n\\lim_{a \\to \\infty} \\lbrack 2\\sqrt{a} -4\\rbrack\\\\"
As a tends to infinite, entire expression tends to infinite.
Thus the given integral is divergent.
Comments
Leave a comment