Answer to Question #186252 in Calculus for Phyroe

Question #186252

Improper Integral (Integrals with Infinite Limits)


∫dy/√(y-1) from 5 to ∞


1
Expert's answer
2021-05-07T11:40:32-0400

Solution:



1y1dxfrom5 to \int \frac{1}{\sqrt{y-1}}\,dx \quad from \quad 5\ to \ \infty


can be written as


lima5a1y1dy\lim_{a \to \infty} \int_{5}^a \frac{1}{\sqrt{y-1}}\,dy

y1=t     dy=dty5;t4 and y;tlima4a1tdty-1 =t \implies\,dy=dt\\ y\rightarrow5; t\rightarrow4\ and\ y\rightarrow\infty; t\rightarrow\infty\\ \therefore \quad \lim_{a \to \infty} \int_{4}^a \frac{1}{\sqrt{t}}\,dt\\lima[[t12+112+1]a[t12+112+1]4]\lim_{a \to \infty} \lbrack \lbrack \frac{t^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}\rbrack _{a}-\lbrack \frac{t^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}\rbrack _{4}\rbrack

lima[2a24]lima[2a4]\lim_{a \to \infty} \lbrack 2\sqrt{a} -2\sqrt{4}\rbrack \\ \lim_{a \to \infty} \lbrack 2\sqrt{a} -4\rbrack\\

As a tends to infinite, entire expression tends to infinite.

Thus the given integral is divergent.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment