Improper Integral (Integrals with Infinite Limits)
∫e^x dx from - ∞ to 1
Given Improper integral is-
I=∫−∞1exdxI=\int_{-\infty}^1e^xdxI=∫−∞1exdx
So, This integral can be written as-
I=limp→∞∫−p1exdx=limp→∞ex∣p1=limp→∞(e−e−p)I=lim_{p\to \infty}\int_-p^1e^xdx \\ =lim_{p\to \infty}e^x|_p^1 \\ =lim_{p\to \infty} (e-e^{-p})\\I=limp→∞∫−p1exdx=limp→∞ex∣p1=limp→∞(e−e−p)
=e−1e∞=e−1∞=e−0=e=e-\dfrac{1}{e^{\infty}} =e-\dfrac{1}{\infty}=e-0=e=e−e∞1=e−∞1=e−0=e
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments