Question #186260

Define h(0,0) in such a way that h is continuous at origin here n=5

h(u,v)=ln⁡((nu^2-u^2 v^2+nv^2)/(u^2+v^2 ))


1
Expert's answer
2021-05-07T09:49:04-0400

Checking continuity at (0,0)

limx0(f(x))\lim _{x\to \:0}(f(x))


limu,v(0,0)h(u,v)=limu,v(0,0)(ln((nu2u2v2+nv2)(u2+v2))\lim\limits_{u,v \to (0,0)}h(u,v)=\lim\limits_{u,v \to (0,0)} (\frac{ln⁡((nu^2-u^2 v^2+nv^2)}{(u^2+v^2 )})


Left hand side

limu,v(0,0)(ln((5u2u2v2+5v2)(u2+v2))=\lim\limits_{u,v \to (0,0)} (\frac{ln⁡((5u^2-u^2 v^2+5v^2)}{(u^2+v^2 )})=-\infin


Right-hand side

limu,v(0,0)(ln((5u2u2v2+5v2)(u2+v2))=\lim\limits_{u,v \to (0,0)} (\frac{ln⁡((5u^2-u^2 v^2+5v^2)}{(u^2+v^2 )})=-\infin

h is not contiuous at (0,0)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS