Define h(0,0) in such a way that h is continuous at origin here n=5
h(u,v)=ln((nu^2-u^2 v^2+nv^2)/(u^2+v^2 ))
Checking continuity at (0,0)
"\\lim _{x\\to \\:0}(f(x))"
"\\lim\\limits_{u,v \\to (0,0)}h(u,v)=\\lim\\limits_{u,v \\to (0,0)} (\\frac{ln\u2061((nu^2-u^2 v^2+nv^2)}{(u^2+v^2 )})"
Left hand side
"\\lim\\limits_{u,v \\to (0,0)} (\\frac{ln\u2061((5u^2-u^2 v^2+5v^2)}{(u^2+v^2 )})=-\\infin"
Right-hand side
"\\lim\\limits_{u,v \\to (0,0)} (\\frac{ln\u2061((5u^2-u^2 v^2+5v^2)}{(u^2+v^2 )})=-\\infin"
h is not contiuous at (0,0)
Comments
Leave a comment