Checking continuity at (0,0)
lim x → 0 ( cos ( x ) + e 5 x + sinh ( x 2 ) + x + e 5 x ) \lim _{x\to \:0}\left(\cos \left(x\right)+e^5x+\sqrt{\sinh \left(x^2\right)}+\sqrt{x+e^5x}\right) lim x → 0 ( cos ( x ) + e 5 x + sinh ( x 2 ) + x + e 5 x )
= cos ( 0 ) + e 5 ⋅ 0 + sinh ( 0 2 ) + 0 + e 5 ⋅ 0 =\cos \left(0\right)+e^5\cdot \:0+\sqrt{\sinh \left(0^2\right)}+\sqrt{0+e^5\cdot \:0} = cos ( 0 ) + e 5 ⋅ 0 + sinh ( 0 2 ) + 0 + e 5 ⋅ 0
lim u , v → ( 0 , 0 ) h ( u , v ) = lim u , v → ( 0 , 0 ) c o s ( u ) + e n u + ( s i n h ( u 2 ) + ( v + e n u ) ) = 1 \lim\limits_{u,v \to (0,0)}h(u,v)=\lim\limits_{u,v \to (0,0)} cos(u)+e^nu+ \sqrt{(sinh(u^2 )} + \sqrt{(v+e^nu ))}= 1 u , v → ( 0 , 0 ) lim h ( u , v ) = u , v → ( 0 , 0 ) lim cos ( u ) + e n u + ( s inh ( u 2 ) + ( v + e n u )) = 1
h is contiuous at (0,0)
Since cos(u) is continuous on R h(u,v) is continuous on R
Comments
Leave a comment