Is the function h(u,v)=cos(u)+e^nu+√(sinh(u^2 )+√(v+e^nu )), Where n=5 Is is continuous? In case of yes then find the points of continuity. Explain briefly
Checking continuity at (0,0)
"\\lim _{x\\to \\:0}\\left(\\cos \\left(x\\right)+e^5x+\\sqrt{\\sinh \\left(x^2\\right)}+\\sqrt{x+e^5x}\\right)"
"=\\cos \\left(0\\right)+e^5\\cdot \\:0+\\sqrt{\\sinh \\left(0^2\\right)}+\\sqrt{0+e^5\\cdot \\:0}"
"\\lim\\limits_{u,v \\to (0,0)}h(u,v)=\\lim\\limits_{u,v \\to (0,0)} cos\u2061(u)+e^nu+ \\sqrt{(sinh\u2061(u^2 )} + \\sqrt{(v+e^nu ))}= 1"
h is contiuous at (0,0)
Since cos(u) is continuous on R h(u,v) is continuous on R
Comments
Leave a comment