Question #186262

Is the function h(u,v)=cos⁡(u)+e^nu+√(sinh⁡(u^2 )+√(v+e^nu ))   , Where n is second digit of your arid number for example if your arid number is 19-arid-12345 then choose n=2. Is is continuous? In case of yes then find the points of continuity. Explain briefly


1
Expert's answer
2021-05-07T09:30:37-0400

h(u,v)=cos(u)+e2u+(sinh(u2)+v+e2u)Forh(u,v)to continuous,h(u,v)has to be definedand for the function to be defined,v+e2u>0to make the the functionin the square root positive    v>e2uAlso, ifz=v+e2usinh(u2)+z>0sinh(u2)>zu2>arcsinh(v+e2u)Butv+e2u>0,    u2>arcsinh(v+e2u)>arcsinh(0)=0    u>0h(u,v)is continuous if and only ifu>0andv>e2u.\displaystyle h(u,v)=cos⁡(u)+e^{2u}+\sqrt{\left(\sinh⁡(u^2 )+\sqrt{v+e^{2u}}\right)}\\ \textsf{For}\,\, h(u, v)\,\, \textsf{to continuous,}\,\, h(u, v)\\ \textsf{has to be defined}\\ \textsf{and for the function to be defined,}\\ v + e^{2u} > 0\,\, \\ \textsf{to make the the function}\\\textsf{in the square root positive}\\ \implies v > -e^{2u}\\ \textsf{Also, if}\,\, z = \sqrt{v + e^{2u}}\\ \sinh(u^2) + z > 0 \\ \sinh(u^2) > -z\\ u^2 > \arcsin\mathrm{h}\left(-\sqrt{v + e^{2u}}\right)\\ \textsf{But}\,\, v + e^{2u} > 0,\\ \implies u^2 > \arcsin\mathrm{h}\left(\sqrt{v + e^{2u}}\right) > \arcsin\mathrm{h}(0) = 0\\ \implies u > 0\\ \therefore h(u, v) \,\, \textsf{is continuous if and only if}\\ u >0\,\, \textsf{and}\,\, v > -e^{2u}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS