Question #180405

Use the method cylinders to determine the volume of the solid obtained by rotating the region bounded by the given curves about the given axis of y=e^1/2 x/x+2, y=5 - 1/4 x, x=-1 abd x=6 about the line x=-2.


1
Expert's answer
2021-04-13T23:32:59-0400

Given curves are-

f1(x)=ex2x+2,f2(x)=514x,x=1,x=6f_1(x)=\dfrac{e^{\frac{x}{2}}}{x+2},f_2(x)=5-\dfrac{1}{4}x, x=-1,x=6


The Volume of the cylinder about the line x=-2 is-


V=2π16x[f1(x)f2(x)]dxV=2\pi\int_{-1}^6x[f_1(x)-f_2(x)]dx


=2π16x[ex2x+25+14x]dx=2\pi\int_{-1}^6x[\dfrac{e^{\frac{x}{2}}}{x+2}-5+\dfrac{1}{4}x]dx


=2π[16xex2x+2dx165xdx+16x24dx]=2\pi [\int_{-1}^6\dfrac{xe^{\frac{x}{2}}}{x+2}dx-\int_{-1}^65xdx+\int_{-1}^6\dfrac{x^2}{4}dx]


=2π[2ex22(x2+1e)5x22+x31216=2\pi[2e^{\frac{x}{2}}-2(\dfrac{\frac{x}{2}+1}{e})-5\dfrac{x^2}{2}+\dfrac{x^3}{12}|_{-1}^6


=2π[2e38e90+18(2ex21e52112)]=2\pi[2e^3-\dfrac{8}{e}-90+18-(2e^{-\frac{x}{2}}-\dfrac{1}{e}-\dfrac{5}{2}-\dfrac{1}{12})]


=2π[2e37e83312]=2\pi[2e^3-\dfrac{7}{e}-\dfrac{833}{12}]



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS