Use the method cylinders to determine the volume of the solid obtained by rotating the region bounded by the given curves about the given axis of y=e^1/2 x/x+2, y=5 - 1/4 x, x=-1 abd x=6 about the line x=-2.
Given curves are-
"f_1(x)=\\dfrac{e^{\\frac{x}{2}}}{x+2},f_2(x)=5-\\dfrac{1}{4}x, x=-1,x=6"
The Volume of the cylinder about the line x=-2 is-
"V=2\\pi\\int_{-1}^6x[f_1(x)-f_2(x)]dx"
"=2\\pi\\int_{-1}^6x[\\dfrac{e^{\\frac{x}{2}}}{x+2}-5+\\dfrac{1}{4}x]dx"
"=2\\pi [\\int_{-1}^6\\dfrac{xe^{\\frac{x}{2}}}{x+2}dx-\\int_{-1}^65xdx+\\int_{-1}^6\\dfrac{x^2}{4}dx]"
"=2\\pi[2e^{\\frac{x}{2}}-2(\\dfrac{\\frac{x}{2}+1}{e})-5\\dfrac{x^2}{2}+\\dfrac{x^3}{12}|_{-1}^6"
"=2\\pi[2e^3-\\dfrac{8}{e}-90+18-(2e^{-\\frac{x}{2}}-\\dfrac{1}{e}-\\dfrac{5}{2}-\\dfrac{1}{12})]"
"=2\\pi[2e^3-\\dfrac{7}{e}-\\dfrac{833}{12}]"
Comments
Leave a comment