x = 2 3 ( y − 1 ) 3 2 d x d y = ( y − 1 ) 1 2 ( d x d y ) 2 = y − 1 1 + ( d x d y ) 2 = y 1 + ( d x d y ) 2 = y ∫ 1 4 1 + ( d x d y ) 2 d y = ∫ 1 4 y d y = 2 y 3 2 3 ∣ 1 4 = 16 − 2 3 = 14 3 \displaystyle
x = \frac{2}{3} \left(y - 1\right)^{\frac{3}{2}}\\
\frac{\mathrm{d}x}{\mathrm{d}y} = \left(y - 1\right)^{\frac{1}{2}}\\
\left(\frac{\mathrm{d}x}{\mathrm{d}y}\right)^2 = y - 1\\
1 + \left(\frac{\mathrm{d}x}{\mathrm{d}y}\right)^2 = y\\
\sqrt{1 + \left(\frac{\mathrm{d}x}{\mathrm{d}y}\right)^2} = \sqrt{y}\\
\begin{aligned}
\int_1^4\sqrt{1 + \left(\frac{\mathrm{d}x}{\mathrm{d}y}\right)^2}\,\mathrm{d}y &= \int_1^4 \,\,\sqrt{y}\,\mathrm{d}y
\\&= \frac{2y^{\frac{3}{2}}}{3}\biggr\vert_1^4 = \frac{16 - 2}{3} = \frac{14}{3}
\end{aligned} x = 3 2 ( y − 1 ) 2 3 d y d x = ( y − 1 ) 2 1 ( d y d x ) 2 = y − 1 1 + ( d y d x ) 2 = y 1 + ( d y d x ) 2 = y ∫ 1 4 1 + ( d y d x ) 2 d y = ∫ 1 4 y d y = 3 2 y 2 3 ∣ ∣ 1 4 = 3 16 − 2 = 3 14
Comments