Determine the length of curve π₯ =
2/3
(π¦ β 1)raise to 3/2 when π¦ β [1,4]
"\\displaystyle\nx = \\frac{2}{3} \\left(y - 1\\right)^{\\frac{3}{2}}\\\\\n\n\\frac{\\mathrm{d}x}{\\mathrm{d}y} = \\left(y - 1\\right)^{\\frac{1}{2}}\\\\\n\n\n\\left(\\frac{\\mathrm{d}x}{\\mathrm{d}y}\\right)^2 = y - 1\\\\\n\n\n1 + \\left(\\frac{\\mathrm{d}x}{\\mathrm{d}y}\\right)^2 = y\\\\\n\n\\sqrt{1 + \\left(\\frac{\\mathrm{d}x}{\\mathrm{d}y}\\right)^2} = \\sqrt{y}\\\\\n\n\n\\begin{aligned}\n\\int_1^4\\sqrt{1 + \\left(\\frac{\\mathrm{d}x}{\\mathrm{d}y}\\right)^2}\\,\\mathrm{d}y &= \\int_1^4 \\,\\,\\sqrt{y}\\,\\mathrm{d}y \n\\\\&= \\frac{2y^{\\frac{3}{2}}}{3}\\biggr\\vert_1^4 = \\frac{16 - 2}{3} = \\frac{14}{3}\n\\end{aligned}"
Comments
Leave a comment