Determine the length of curve 𝑥 =
2/3
(𝑦 − 1)raise to 3/2 when 𝑦 ∈ [1,4]
x=23(y−1)32dxdy=(y−1)12(dxdy)2=y−11+(dxdy)2=y1+(dxdy)2=y∫141+(dxdy)2 dy=∫14 y dy=2y323∣14=16−23=143\displaystyle x = \frac{2}{3} \left(y - 1\right)^{\frac{3}{2}}\\ \frac{\mathrm{d}x}{\mathrm{d}y} = \left(y - 1\right)^{\frac{1}{2}}\\ \left(\frac{\mathrm{d}x}{\mathrm{d}y}\right)^2 = y - 1\\ 1 + \left(\frac{\mathrm{d}x}{\mathrm{d}y}\right)^2 = y\\ \sqrt{1 + \left(\frac{\mathrm{d}x}{\mathrm{d}y}\right)^2} = \sqrt{y}\\ \begin{aligned} \int_1^4\sqrt{1 + \left(\frac{\mathrm{d}x}{\mathrm{d}y}\right)^2}\,\mathrm{d}y &= \int_1^4 \,\,\sqrt{y}\,\mathrm{d}y \\&= \frac{2y^{\frac{3}{2}}}{3}\biggr\vert_1^4 = \frac{16 - 2}{3} = \frac{14}{3} \end{aligned}x=32(y−1)23dydx=(y−1)21(dydx)2=y−11+(dydx)2=y1+(dydx)2=y∫141+(dydx)2dy=∫14ydy=32y23∣∣14=316−2=314
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments