Determine the length of curve 𝑦 = log(sec 𝑥) between 0 ≤ 𝑥 ≤
𝜋
4
Given f(x) = y = log(s"\\because" ec(x)) on [0,"\\frac{\\pi}{4}"]
The arc length is given by L = "\\int_{a}^{b} \\sqrt{(f'(x))^2 +1 } \\,dx"
we have f(x) = log(sec(x))
"\\implies" f'(x) = "\\frac{1}{sec(x)} \\cdot" (sec(x) "\\cdot" tan(x)) = tan(x)
"\\therefore" L = "\\int_{0}^{\\frac{\\pi}{4}} \\sqrt{(tan(x))^2 +1 }dx"
= "\\int_{0}^{\\frac{\\pi}{4}} \\sqrt{tan^2(x) +1 }dx"
= "\\int_{0}^{\\frac{\\pi}{4}} \\sqrt{sec^2(x) }dx" ( "\\because" sec2(x) - tan2(x) = 1)
= "\\int_{0}^{\\frac{\\pi}{4}} sec(x) dx"
= [ log( sec(x) +tan(x) )]"|^\\frac{\\pi}{4}_0"
= [log(tan("\\frac{\\pi}{4}") + sec("\\frac{\\pi}{4}")] - [log(tan(0) + sec(0)]
= [log(1+ "\\sqrt{2}" )] - [log(1)]
"\\therefore" L = log(1+ "\\sqrt{2}" )
Comments
Leave a comment