Determine the length of curve 𝑦 = log(sec 𝑥) between 0 ≤ 𝑥 ≤
𝜋
4
Given f(x) = y = log(s∵\because∵ ec(x)) on [0,π4\frac{\pi}{4}4π]
The arc length is given by L = ∫ab(f′(x))2+1 dx\int_{a}^{b} \sqrt{(f'(x))^2 +1 } \,dx∫ab(f′(x))2+1dx
we have f(x) = log(sec(x))
⟹ \implies⟹ f'(x) = 1sec(x)⋅\frac{1}{sec(x)} \cdotsec(x)1⋅ (sec(x) ⋅\cdot⋅ tan(x)) = tan(x)
∴\therefore∴ L = ∫0π4(tan(x))2+1dx\int_{0}^{\frac{\pi}{4}} \sqrt{(tan(x))^2 +1 }dx∫04π(tan(x))2+1dx
= ∫0π4tan2(x)+1dx\int_{0}^{\frac{\pi}{4}} \sqrt{tan^2(x) +1 }dx∫04πtan2(x)+1dx
= ∫0π4sec2(x)dx\int_{0}^{\frac{\pi}{4}} \sqrt{sec^2(x) }dx∫04πsec2(x)dx ( ∵\because∵ sec2(x) - tan2(x) = 1)
= ∫0π4sec(x)dx\int_{0}^{\frac{\pi}{4}} sec(x) dx∫04πsec(x)dx
= [ log( sec(x) +tan(x) )]∣0π4|^\frac{\pi}{4}_0∣04π
= [log(tan(π4\frac{\pi}{4}4π) + sec(π4\frac{\pi}{4}4π)] - [log(tan(0) + sec(0)]
= [log(1+ 2\sqrt{2}2 )] - [log(1)]
∴\therefore∴ L = log(1+ 2\sqrt{2}2 )
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments