Given f(x) = y = log(s∵ \because ∵ ec(x)) on [0,π 4 \frac{\pi}{4} 4 π ]
The arc length is given by L = ∫ a b ( f ′ ( x ) ) 2 + 1 d x \int_{a}^{b} \sqrt{(f'(x))^2 +1 } \,dx ∫ a b ( f ′ ( x ) ) 2 + 1 d x
we have f(x) = log(sec(x))
⟹ \implies ⟹ f'(x) = 1 s e c ( x ) ⋅ \frac{1}{sec(x)} \cdot sec ( x ) 1 ⋅ (sec(x) ⋅ \cdot ⋅ tan(x)) = tan(x)
∴ \therefore ∴ L = ∫ 0 π 4 ( t a n ( x ) ) 2 + 1 d x \int_{0}^{\frac{\pi}{4}} \sqrt{(tan(x))^2 +1 }dx ∫ 0 4 π ( t an ( x ) ) 2 + 1 d x
= ∫ 0 π 4 t a n 2 ( x ) + 1 d x \int_{0}^{\frac{\pi}{4}} \sqrt{tan^2(x) +1 }dx ∫ 0 4 π t a n 2 ( x ) + 1 d x
= ∫ 0 π 4 s e c 2 ( x ) d x \int_{0}^{\frac{\pi}{4}} \sqrt{sec^2(x) }dx ∫ 0 4 π se c 2 ( x ) d x ( ∵ \because ∵ sec2 (x) - tan2 (x) = 1)
= ∫ 0 π 4 s e c ( x ) d x \int_{0}^{\frac{\pi}{4}} sec(x) dx ∫ 0 4 π sec ( x ) d x
= [ log( sec(x) +tan(x) )]∣ 0 π 4 |^\frac{\pi}{4}_0 ∣ 0 4 π
= [log(tan(π 4 \frac{\pi}{4} 4 π ) + sec(π 4 \frac{\pi}{4} 4 π )] - [log(tan(0) + sec(0)]
= [log(1+ 2 \sqrt{2} 2 )] - [log(1)]
∴ \therefore ∴ L = log(1+ 2 \sqrt{2} 2 )
Comments