a) the points of intersection of the parabola y2=2x and the line y=2x are points for whivh;
2x=2x⟹2x=4x2;4x2−2x=0
2x(2x−1)=0⟹x=0,x=21...(i)
now, ∫021(2x−2x)dx=[322x23−x2]021
=[322(21)23−(21)2]=0
=121 square units of length
b) the points of intersection of the curves are;(2x)2=4x⟹4x2=4x=4x2−4x=0;4x(x−1)=0
x=0,x=1...(i)
thus,
area=∫01(2x−2x)dx=[34x23−x2]01
=[34(1)23−(1)2]−0=31 square units of length
c) the points of intersection of the parabolay2=4ax and the line y=x happen when
22x=x⟹4ax=x2
∴x2−4ax=0;x(x−4a)=0
x=0,x=4a...(i)∀a>0
thus
area=∫04a(22x−x)dx=[34ax23−2x2]04a
=[34a(4a23−2(4a)2]=38a2 square units of length
d) let k>0 and we may assume m>o without loss of generality (since for m<0, the region will be symmetric to that of m>0 but only below x-axis);
now, the points of intersection are where (mx)2=2kx⟹m2x2−2kx=0;x(xm2−2k)=0
x=0,x=m22k...(i)
thus
area=∫0m22k(2kx−mx)dx=[322kx23−2mx2]0m22k
=[322k(m22k)23−2m(m22k)2]=3m22k2 square units of length
Comments