Question #180268

Find the area of region bounded between the parabola and line given below:

a. y2 = 2x and y = 2x.

b. y2 = 4x and y = 2x.

c. y2 = 4ax and y = x.

d. y2 = 2kx and y = mx.


1
Expert's answer
2021-04-29T14:25:09-0400

a) the points of intersection of the parabola y2=2xy^2= 2x and the line y=2x are points for whivh;

2x=2x    2x=4x2;4x22x=0\sqrt{2x}= 2x \implies 2x=4x^2; 4x^2-2x=0

2x(2x1)=0    x=0,x=12...(i)2x(2x-1)=0 \implies x=0, x=\frac 12 ...(i)

now, 012(2x2x)dx=[232x32x2]012\int ^{\frac12}_0 (\sqrt{2x}-2x)dx= [\frac 23 \sqrt 2 x^{\frac32}-x^2]^{\frac12}_0

=[232(12)32(12)2]=0=[\frac 23 \sqrt2 (\frac 12)^{\frac 32}-(\frac 12)^2]=0

=112= \frac 1{12} square units of length


b) the points of intersection of the curves are;(2x)2=4x    4x2=4x=4x24x=0;4x(x1)=0(2x)^2=4x \implies 4x^2 = 4x = 4x^2-4x=0; 4x(x-1)=0

x=0,x=1...(i)x=0, x=1 ...(i)

thus,

area=01(2x2x)dx=[43x32x2]01area= \int^1_0 (2\sqrt x -2x)dx= [\frac 43 x^{\frac 32}- x^2]_0^1

=[43(1)32(1)2]0=13= [\frac 43 (1)^{\frac 32}-(1)^2]-0= \frac 13 square units of length

c) the points of intersection of the parabolay2=4axy^2= 4ax and the line y=x happen when

22x=x    4ax=x22\sqrt {2x}=x \implies 4ax=x^2

x24ax=0;x(x4a)=0\therefore x^2-4ax=0; x(x-4a)=0

x=0,x=4a...(i)a>0x=0, x=4a ...(i) \forall a>0

thus

area=04a(22xx)dx=[43ax32x22]04aarea= \int^{4a}_0 (2\sqrt{2x}-x)dx= [\frac 43 \sqrt a x^{\frac32} -\frac {x^2}2]^{4a}_0

=[43a(4a32(4a)22]=83a2=[\frac 43 \sqrt a (4a^{\frac 32} -\frac {(4a)^2}{2}]= \frac 83 a^2 square units of length

d) let k>0 and we may assume m>o without loss of generality (since for m<0, the region will be symmetric to that of m>0 but only below x-axis);

now, the points of intersection are where (mx)2=2kx    m2x22kx=0;x(xm22k)=0(mx)^2 = 2kx \implies m^2 x^2 - 2kx=0; x(xm^2-2k)=0

x=0,x=2km2...(i)x=0, x=\frac {2k}{m^2} ...(i)

thus

area=02km2(2kxmx)dx=[232kx32mx22]02km2area = \int^{\frac {2k}{m^2}}_0 (\sqrt {2kx}-mx)dx= [\frac 23 \sqrt {2k}x^{\frac 32} -\frac {mx^2}{2} ]^{\frac {2k}{m^2}}_0

=[232k(2km2)32m2(2km2)2]=2k23m2=[\frac 23 \sqrt{2k} (\frac {2k}{ m^2})^{\frac 32}- \frac m2(\frac {2k}{m^2})^2]=\frac {2k^2}{3m^2} square units of length






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS