Find the area of region bounded between the parabola and line given below:
a. y2 = 2x and y = 2x.
b. y2 = 4x and y = 2x.
c. y2 = 4ax and y = x.
d. y2 = 2kx and y = mx.
a) the points of intersection of the parabola "y^2= 2x" and the line y=2x are points for whivh;
"\\sqrt{2x}= 2x \\implies 2x=4x^2; 4x^2-2x=0"
"2x(2x-1)=0 \\implies x=0, x=\\frac 12 ...(i)"
now, "\\int ^{\\frac12}_0 (\\sqrt{2x}-2x)dx= [\\frac 23 \\sqrt 2 x^{\\frac32}-x^2]^{\\frac12}_0"
"=[\\frac 23 \\sqrt2 (\\frac 12)^{\\frac 32}-(\\frac 12)^2]=0"
"= \\frac 1{12}" square units of length
b) the points of intersection of the curves are;"(2x)^2=4x \\implies 4x^2 = 4x = 4x^2-4x=0; 4x(x-1)=0"
"x=0, x=1 ...(i)"
thus,
"area= \\int^1_0 (2\\sqrt x -2x)dx= [\\frac 43 x^{\\frac 32}- x^2]_0^1"
"= [\\frac 43 (1)^{\\frac 32}-(1)^2]-0= \\frac 13" square units of length
c) the points of intersection of the parabola"y^2= 4ax" and the line y=x happen when
"2\\sqrt {2x}=x \\implies 4ax=x^2"
"\\therefore x^2-4ax=0; x(x-4a)=0"
"x=0, x=4a ...(i) \\forall a>0"
thus
"area= \\int^{4a}_0 (2\\sqrt{2x}-x)dx= [\\frac 43 \\sqrt a x^{\\frac32} -\\frac {x^2}2]^{4a}_0"
"=[\\frac 43 \\sqrt a (4a^{\\frac 32} -\\frac {(4a)^2}{2}]= \\frac 83 a^2" square units of length
d) let k>0 and we may assume m>o without loss of generality (since for m<0, the region will be symmetric to that of m>0 but only below x-axis);
now, the points of intersection are where "(mx)^2 = 2kx \\implies m^2 x^2 - 2kx=0; x(xm^2-2k)=0"
"x=0, x=\\frac {2k}{m^2} ...(i)"
thus
"area = \\int^{\\frac {2k}{m^2}}_0 (\\sqrt {2kx}-mx)dx= [\\frac 23 \\sqrt {2k}x^{\\frac 32} -\\frac {mx^2}{2} ]^{\\frac {2k}{m^2}}_0"
"=[\\frac 23 \\sqrt{2k} (\\frac {2k}{ m^2})^{\\frac 32}- \\frac m2(\\frac {2k}{m^2})^2]=\\frac {2k^2}{3m^2}" square units of length
Comments
Leave a comment