a) the points of intersection of the parabola y 2 = 2 x y^2= 2x y 2 = 2 x and the line y=2x are points for whivh;
2 x = 2 x ⟹ 2 x = 4 x 2 ; 4 x 2 − 2 x = 0 \sqrt{2x}= 2x \implies 2x=4x^2; 4x^2-2x=0 2 x = 2 x ⟹ 2 x = 4 x 2 ; 4 x 2 − 2 x = 0
2 x ( 2 x − 1 ) = 0 ⟹ x = 0 , x = 1 2 . . . ( i ) 2x(2x-1)=0 \implies x=0, x=\frac 12 ...(i) 2 x ( 2 x − 1 ) = 0 ⟹ x = 0 , x = 2 1 ... ( i )
now, ∫ 0 1 2 ( 2 x − 2 x ) d x = [ 2 3 2 x 3 2 − x 2 ] 0 1 2 \int ^{\frac12}_0 (\sqrt{2x}-2x)dx= [\frac 23 \sqrt 2 x^{\frac32}-x^2]^{\frac12}_0 ∫ 0 2 1 ( 2 x − 2 x ) d x = [ 3 2 2 x 2 3 − x 2 ] 0 2 1
= [ 2 3 2 ( 1 2 ) 3 2 − ( 1 2 ) 2 ] = 0 =[\frac 23 \sqrt2 (\frac 12)^{\frac 32}-(\frac 12)^2]=0 = [ 3 2 2 ( 2 1 ) 2 3 − ( 2 1 ) 2 ] = 0
= 1 12 = \frac 1{12} = 12 1 square units of length
b) the points of intersection of the curves are;( 2 x ) 2 = 4 x ⟹ 4 x 2 = 4 x = 4 x 2 − 4 x = 0 ; 4 x ( x − 1 ) = 0 (2x)^2=4x \implies 4x^2 = 4x = 4x^2-4x=0; 4x(x-1)=0 ( 2 x ) 2 = 4 x ⟹ 4 x 2 = 4 x = 4 x 2 − 4 x = 0 ; 4 x ( x − 1 ) = 0
x = 0 , x = 1... ( i ) x=0, x=1 ...(i) x = 0 , x = 1... ( i )
thus,
a r e a = ∫ 0 1 ( 2 x − 2 x ) d x = [ 4 3 x 3 2 − x 2 ] 0 1 area= \int^1_0 (2\sqrt x -2x)dx= [\frac 43 x^{\frac 32}- x^2]_0^1 a re a = ∫ 0 1 ( 2 x − 2 x ) d x = [ 3 4 x 2 3 − x 2 ] 0 1
= [ 4 3 ( 1 ) 3 2 − ( 1 ) 2 ] − 0 = 1 3 = [\frac 43 (1)^{\frac 32}-(1)^2]-0= \frac 13 = [ 3 4 ( 1 ) 2 3 − ( 1 ) 2 ] − 0 = 3 1 square units of length
c) the points of intersection of the parabolay 2 = 4 a x y^2= 4ax y 2 = 4 a x and the line y=x happen when
2 2 x = x ⟹ 4 a x = x 2 2\sqrt {2x}=x \implies 4ax=x^2 2 2 x = x ⟹ 4 a x = x 2
∴ x 2 − 4 a x = 0 ; x ( x − 4 a ) = 0 \therefore x^2-4ax=0; x(x-4a)=0 ∴ x 2 − 4 a x = 0 ; x ( x − 4 a ) = 0
x = 0 , x = 4 a . . . ( i ) ∀ a > 0 x=0, x=4a ...(i) \forall a>0 x = 0 , x = 4 a ... ( i ) ∀ a > 0
thus
a r e a = ∫ 0 4 a ( 2 2 x − x ) d x = [ 4 3 a x 3 2 − x 2 2 ] 0 4 a area= \int^{4a}_0 (2\sqrt{2x}-x)dx= [\frac 43 \sqrt a x^{\frac32} -\frac {x^2}2]^{4a}_0 a re a = ∫ 0 4 a ( 2 2 x − x ) d x = [ 3 4 a x 2 3 − 2 x 2 ] 0 4 a
= [ 4 3 a ( 4 a 3 2 − ( 4 a ) 2 2 ] = 8 3 a 2 =[\frac 43 \sqrt a (4a^{\frac 32} -\frac {(4a)^2}{2}]= \frac 83 a^2 = [ 3 4 a ( 4 a 2 3 − 2 ( 4 a ) 2 ] = 3 8 a 2 square units of length
d) let k>0 and we may assume m>o without loss of generality (since for m<0, the region will be symmetric to that of m>0 but only below x-axis);
now, the points of intersection are where ( m x ) 2 = 2 k x ⟹ m 2 x 2 − 2 k x = 0 ; x ( x m 2 − 2 k ) = 0 (mx)^2 = 2kx \implies m^2 x^2 - 2kx=0; x(xm^2-2k)=0 ( m x ) 2 = 2 k x ⟹ m 2 x 2 − 2 k x = 0 ; x ( x m 2 − 2 k ) = 0
x = 0 , x = 2 k m 2 . . . ( i ) x=0, x=\frac {2k}{m^2} ...(i) x = 0 , x = m 2 2 k ... ( i )
thus
a r e a = ∫ 0 2 k m 2 ( 2 k x − m x ) d x = [ 2 3 2 k x 3 2 − m x 2 2 ] 0 2 k m 2 area = \int^{\frac {2k}{m^2}}_0 (\sqrt {2kx}-mx)dx= [\frac 23 \sqrt {2k}x^{\frac 32} -\frac {mx^2}{2} ]^{\frac {2k}{m^2}}_0 a re a = ∫ 0 m 2 2 k ( 2 k x − m x ) d x = [ 3 2 2 k x 2 3 − 2 m x 2 ] 0 m 2 2 k
= [ 2 3 2 k ( 2 k m 2 ) 3 2 − m 2 ( 2 k m 2 ) 2 ] = 2 k 2 3 m 2 =[\frac 23 \sqrt{2k} (\frac {2k}{ m^2})^{\frac 32}- \frac m2(\frac {2k}{m^2})^2]=\frac {2k^2}{3m^2} = [ 3 2 2 k ( m 2 2 k ) 2 3 − 2 m ( m 2 2 k ) 2 ] = 3 m 2 2 k 2 square units of length
Comments