Given
x = 2 3 ( y − 1 ) 3 2 x=\frac{2}{3}(y-1)^\frac{3}{2} x = 3 2 ( y − 1 ) 2 3
Length of curve is given by L = ∫ 0 4 1 + ( d x d y ) 2 d y L=\int_{0}^4 \sqrt{1+(\frac{dx}{dy})^2}dy L = ∫ 0 4 1 + ( d y d x ) 2 d y
Let us evaluate the above definite integral.
By differentiating with respect to y,
d x d y = ( y − 1 ) 1 / 2 \frac{dx}{dy} =(y-1)^{1/2} d y d x = ( y − 1 ) 1/2 So, the integrand can be simplified as
1 + ( d x d y ) 2 = 1 + [ ( y − 1 ) 1 / 2 ] 2 = y = y 1 / 2 \sqrt{1+(\frac{dx}{dy})^2}=\sqrt{1+[(y-1)^{1/2}]^2}=\sqrt{y}=y^{1/2} 1 + ( d y d x ) 2 = 1 + [( y − 1 ) 1/2 ] 2 = y = y 1/2 We have,
L = ∫ 0 4 y 1 / 2 d y = [ 2 3 y 3 / 2 ] 0 4 = 2 3 ( 4 ) 3 / 2 − 2 / 3 ( 0 ) 3 / 2 = 16 / 3 L=\int_{0}^4y^{1/2}dy=[\frac{2}{3}y^{3/2}]_0^4 \newline=\frac{2}{3}(4)^{3/2}-2/3(0)^{3/2}\newline=16/3 L = ∫ 0 4 y 1/2 d y = [ 3 2 y 3/2 ] 0 4 = 3 2 ( 4 ) 3/2 − 2/3 ( 0 ) 3/2 = 16/3
Hence the length of the curve is 16 3 \frac{16}{3} 3 16 .
Comments