Find the area common to the parabolas y2 = 4x and x2 = 4y.
Find the area common to the parabolas "y^2=4x" and "x^2=4y" .
Solution:
Points of interception:
"\\begin{cases}\n y=\\pm2\\sqrt x \\\\\n y=\\frac14x^2\n\\end{cases}"
"\\begin{cases}\n x=0 \\\\\n y=0\n\\end{cases}" and "\\begin{cases}\n x=4 \\\\\n y=4\n\\end{cases}" .
Area:
"S=\\displaystyle\\int_0^4 (2\\sqrt x-\\frac14x^2)dx=" "(2\\cdot \\frac23\\cdot x^\\frac32-\\frac14\\cdot\\frac13\\cdot x^3)|_0^4=\\frac{2^5}{3}-\\frac{4^2}{3}=\\frac{16}{3}" .
Answer: "S=\\frac{16}{3}" .
Comments
Leave a comment