Ifπ(π₯,π¦)=10π₯5β3π₯2π¦6β4π¦4.πΉππππ (π₯,π¦),π (π₯,π¦), π₯π₯ π₯π¦ π (1, β2), π (1, 2)
"\ud835\udc53(\ud835\udc65,\ud835\udc66)=10\ud835\udc65^5\u22123\ud835\udc65^2\ud835\udc66^6\u22124\ud835\udc66^4"
Differentiate w.r.t x
"f(x,y)_x=50x^4=6xy^6"
Again differentiate w.r.t x-
"f(x,y)_{xx}=200x^3-6y^6"
"f(1,2)_{xx}=200(1)^3-6(2)^6=200-384=-184"
"f(1,-2)_{xx}=200(1)^3-6(-2)^6=200-384=-184"
Now differentiate w.r.t y-
"f(x,y)_y=-18x^2y^5-16y^3"
Again differentiate w.r.t. y-
"f(x,y)_{yy}=-90x^2y^4-48y^2"
"f(1,2)_{yy}=-90(1)^2(2)^4-48(2)^2=-1440-192=-1632"
"f(1,-2)_{yy}=-90(1)^2(-2)^4-48(-2)^2=-1140-192=-1632"
Comments
Leave a comment