Air is escaping from a spherical balloon at the rate of 2ππ3 per minute. How fast is the radius shrinking when the volume is 36π ππ3 ?
Find the rate of change of the area π΄, of the circle with respect to its circumference C, π. π ππ΄ ποΏ½
"Volume={4 \\over 3} \\pi r^3"
Since volume is 36π ππ3
Then, "36\\pi= {4 \\over 3}\\pi r^3"
"r^3=27"
r=3cm
Since, "V={4 \\over 3} \\pi r^3" and "{dv \\over dt}=" 2cm3 per mins
"{dv \\over dt}=4\\pi r^2{dr \\over dt}"
"2=4\\pi(3^2) {dr \\over dt}"
"{dr \\over dt}={1 \\over 18\\pi}cm\/mins"
"Area(A)=\\pi r^2"
"Circumference (C)=\n\n2\\pi r"
"r={C \\over 2\\pi}"
"\\therefore \nA= \\pi({C \\over 2\\pi})^2"
"A= {C^2 \\over 4\\pi}"
"{dA \\over dC}={C \\over 2\\pi}units"
Comments
Leave a comment