Air is escaping from a spherical balloon at the rate of 2𝑐𝑚3 per minute. How fast is the radius shrinking when the volume is 36𝜋 𝑐𝑚3 ?
Find the rate of change of the area 𝐴, of the circle with respect to its circumference C, 𝑖. 𝑒 𝑑𝐴 𝑑�
Volume=43πr3Volume={4 \over 3} \pi r^3Volume=34πr3
Since volume is 36𝜋 𝑐𝑚3
Then, 36π=43πr336\pi= {4 \over 3}\pi r^336π=34πr3
r3=27r^3=27r3=27
r=3cm
Since, V=43πr3V={4 \over 3} \pi r^3V=34πr3 and dvdt={dv \over dt}=dtdv= 2cm3 per mins
dvdt=4πr2drdt{dv \over dt}=4\pi r^2{dr \over dt}dtdv=4πr2dtdr
2=4π(32)drdt2=4\pi(3^2) {dr \over dt}2=4π(32)dtdr
drdt=118πcm/mins{dr \over dt}={1 \over 18\pi}cm/minsdtdr=18π1cm/mins
Area(A)=πr2Area(A)=\pi r^2Area(A)=πr2
Circumference(C)=2πrCircumference (C)= 2\pi rCircumference(C)=2πr
r=C2πr={C \over 2\pi}r=2πC
∴A=π(C2π)2\therefore A= \pi({C \over 2\pi})^2∴A=π(2πC)2
A=C24πA= {C^2 \over 4\pi}A=4πC2
dAdC=C2πunits{dA \over dC}={C \over 2\pi}unitsdCdA=2πCunits
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments