Question #179753

Evaluate the integral of f(x, y, z) = x + z - 3 over the cylinder bounded by x^2 + y^2 = 1, z = 0 and z = 1.


1
Expert's answer
2021-04-26T17:41:46-0400

the integral of f(x,y,z)=x+z-3 over the cylinder x2+y2=1x^2+y^2=1 ; z=0 and z=1 is;

01111y21y2(x+z3)dxdydz\int^{1}_{0}\int^{1}_{-1}\int^{\sqrt{1-y^2}} _{-\sqrt{1-y^2}}(x+z-3)dxdydz

=0111[(x22+xz3x)]1y21y2dydz=\int^{1}_{0}\int^{1}_{-1}[(\frac{x^2}{2}+xz-3x)]^{\sqrt{1-y^2}}_{-\sqrt{1-y^2}}dydz

=01112(z3)1y2dydz=\int^{1}_{0}\int^{1}_{-1}2(z-3)\sqrt{1-y^2} dydz

=01[2(z3)111y2]dydz=\int^{1}_{0}[2(z-3)\int^{1}_{-1}\sqrt{1-y^2}]dydz

by letting y=sinθ,    dy=cosθdθy=sin \theta,\implies dy=cos\theta d\theta we then may evaluate the integral as

=01[2(z3)111y2dy]dz=\int^{1}_{0}[2(z-3)\int^{1}_{-1}\sqrt{1-y^2}dy]dz

=01[2(z3)π/2π/21sin2θcosθdθ]dz=\int^{1}_{0}[2(z-3)\int^{\pi/2}_{-\pi/2}\sqrt{1-sin ^2 \theta} cos\theta d\theta ]dz

=01[2(z3)π/2π/2cos2θdθ]dz=\int^{1}_{0}[2(z-3)\int^{\pi/2}_{-\pi/2}cos ^2 \theta d\theta ]dz

=01[2(z3).12π/2π/2(1+cos2θ)dθ]dz=\int^{1}_{0}[2(z-3). \frac{1}{2}\int^{\pi/2}_{-\pi/2}(1+cos2\theta) d\theta ]dz

=01(z3)[θ+12sin2θ]π/2π/2dz=\int^{1}_{0}(z-3)[\theta+\frac{1}{2}sin 2\theta]^{\pi/2}_{-\pi/2}dz

=01(z3)[(π2+12sinπ)(π2+12sinπ]dz=\int^{1}_{0}(z-3)[(\frac{\pi}{2}+\frac {1}{2}sin \pi)- (-\frac{\pi}{2}+\frac{1}{2}sin \pi]dz

=π01(z3)dz=\pi\int^{1}_{0}(z-3)dz

=π[z223z]01=\pi[\frac{z^2}{2}-3z]^{1}_{0}

=π(52)=52π=\pi(\frac{-5}{2})= \frac{-5}{2}\pi



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS