the integral of f(x,y,z)=x+z-3 over the cylinder x2+y2=1 ; z=0 and z=1 is;
∫01∫−11∫−1−y21−y2(x+z−3)dxdydz
=∫01∫−11[(2x2+xz−3x)]−1−y21−y2dydz
=∫01∫−112(z−3)1−y2dydz
=∫01[2(z−3)∫−111−y2]dydz
by letting y=sinθ,⟹dy=cosθdθ we then may evaluate the integral as
=∫01[2(z−3)∫−111−y2dy]dz
=∫01[2(z−3)∫−π/2π/21−sin2θcosθdθ]dz
=∫01[2(z−3)∫−π/2π/2cos2θdθ]dz
=∫01[2(z−3).21∫−π/2π/2(1+cos2θ)dθ]dz
=∫01(z−3)[θ+21sin2θ]−π/2π/2dz
=∫01(z−3)[(2π+21sinπ)−(−2π+21sinπ]dz
=π∫01(z−3)dz
=π[2z2−3z]01
=π(2−5)=2−5π
Comments