the integral of f(x,y,z)=x+z-3 over the cylinder x 2 + y 2 = 1 x^2+y^2=1 x 2 + y 2 = 1 ; z=0 and z=1 is;
∫ 0 1 ∫ − 1 1 ∫ − 1 − y 2 1 − y 2 ( x + z − 3 ) d x d y d z \int^{1}_{0}\int^{1}_{-1}\int^{\sqrt{1-y^2}} _{-\sqrt{1-y^2}}(x+z-3)dxdydz ∫ 0 1 ∫ − 1 1 ∫ − 1 − y 2 1 − y 2 ( x + z − 3 ) d x d y d z
= ∫ 0 1 ∫ − 1 1 [ ( x 2 2 + x z − 3 x ) ] − 1 − y 2 1 − y 2 d y d z =\int^{1}_{0}\int^{1}_{-1}[(\frac{x^2}{2}+xz-3x)]^{\sqrt{1-y^2}}_{-\sqrt{1-y^2}}dydz = ∫ 0 1 ∫ − 1 1 [( 2 x 2 + x z − 3 x ) ] − 1 − y 2 1 − y 2 d y d z
= ∫ 0 1 ∫ − 1 1 2 ( z − 3 ) 1 − y 2 d y d z =\int^{1}_{0}\int^{1}_{-1}2(z-3)\sqrt{1-y^2} dydz = ∫ 0 1 ∫ − 1 1 2 ( z − 3 ) 1 − y 2 d y d z
= ∫ 0 1 [ 2 ( z − 3 ) ∫ − 1 1 1 − y 2 ] d y d z =\int^{1}_{0}[2(z-3)\int^{1}_{-1}\sqrt{1-y^2}]dydz = ∫ 0 1 [ 2 ( z − 3 ) ∫ − 1 1 1 − y 2 ] d y d z
by letting y = s i n θ , ⟹ d y = c o s θ d θ y=sin \theta,\implies dy=cos\theta d\theta y = s in θ , ⟹ d y = cos θ d θ we then may evaluate the integral as
= ∫ 0 1 [ 2 ( z − 3 ) ∫ − 1 1 1 − y 2 d y ] d z =\int^{1}_{0}[2(z-3)\int^{1}_{-1}\sqrt{1-y^2}dy]dz = ∫ 0 1 [ 2 ( z − 3 ) ∫ − 1 1 1 − y 2 d y ] d z
= ∫ 0 1 [ 2 ( z − 3 ) ∫ − π / 2 π / 2 1 − s i n 2 θ c o s θ d θ ] d z =\int^{1}_{0}[2(z-3)\int^{\pi/2}_{-\pi/2}\sqrt{1-sin ^2 \theta} cos\theta d\theta ]dz = ∫ 0 1 [ 2 ( z − 3 ) ∫ − π /2 π /2 1 − s i n 2 θ cos θ d θ ] d z
= ∫ 0 1 [ 2 ( z − 3 ) ∫ − π / 2 π / 2 c o s 2 θ d θ ] d z =\int^{1}_{0}[2(z-3)\int^{\pi/2}_{-\pi/2}cos ^2 \theta d\theta ]dz = ∫ 0 1 [ 2 ( z − 3 ) ∫ − π /2 π /2 co s 2 θ d θ ] d z
= ∫ 0 1 [ 2 ( z − 3 ) . 1 2 ∫ − π / 2 π / 2 ( 1 + c o s 2 θ ) d θ ] d z =\int^{1}_{0}[2(z-3). \frac{1}{2}\int^{\pi/2}_{-\pi/2}(1+cos2\theta) d\theta ]dz = ∫ 0 1 [ 2 ( z − 3 ) . 2 1 ∫ − π /2 π /2 ( 1 + cos 2 θ ) d θ ] d z
= ∫ 0 1 ( z − 3 ) [ θ + 1 2 s i n 2 θ ] − π / 2 π / 2 d z =\int^{1}_{0}(z-3)[\theta+\frac{1}{2}sin 2\theta]^{\pi/2}_{-\pi/2}dz = ∫ 0 1 ( z − 3 ) [ θ + 2 1 s in 2 θ ] − π /2 π /2 d z
= ∫ 0 1 ( z − 3 ) [ ( π 2 + 1 2 s i n π ) − ( − π 2 + 1 2 s i n π ] d z =\int^{1}_{0}(z-3)[(\frac{\pi}{2}+\frac {1}{2}sin \pi)- (-\frac{\pi}{2}+\frac{1}{2}sin \pi]dz = ∫ 0 1 ( z − 3 ) [( 2 π + 2 1 s inπ ) − ( − 2 π + 2 1 s inπ ] d z
= π ∫ 0 1 ( z − 3 ) d z =\pi\int^{1}_{0}(z-3)dz = π ∫ 0 1 ( z − 3 ) d z
= π [ z 2 2 − 3 z ] 0 1 =\pi[\frac{z^2}{2}-3z]^{1}_{0} = π [ 2 z 2 − 3 z ] 0 1
= π ( − 5 2 ) = − 5 2 π =\pi(\frac{-5}{2})= \frac{-5}{2}\pi = π ( 2 − 5 ) = 2 − 5 π
Comments