"\\int\\frac{dx}{e^x+1}". We make the change: "z=e^x". We point out that "z>0". We receive: "\\int\\frac{dz}{z(z+1)}=\\int(\\frac{1}{z}-\\frac{1}{z+1})dz=ln\\,z-ln(z+1)+C=x-ln(e^x+1)+C,C\\in{\\mathbb{R}}"
"\\int\\frac{e^{2x}}{e^x+1}dx" . We make the change "z=e^x" and receive: "\\int\\frac{zdz}{z+1}=\\int(1-\\frac{1}{z+1})dz=z-ln(z+1)+C=e^x-ln(e^x+1)+C,C\\in{\\mathbb{R}}"
"\\int 4(10^{2x^2})dx=\\int4e^{2x^2ln2}dx." The good expression for this integral in terms of elementary functions is not known.
Comments
Leave a comment