Question #179135

Evaluate the indefinite integral in each item

  1. ∫e2x+1dx
  2. ∫1/(1+ex) dx
  3. ∫e2x/(ex+3) dx
  4. ∫4(102x^2) dx
  5. ∫x2/(x3+5) dx
1
Expert's answer
2021-04-15T06:49:26-0400
  1. e2x+1dx=12e2x+1d(2x+1)=12e2x+1+C,CR\int e^{2x+1}dx=\frac12\int e^{2x+1}d(2x+1)=\frac12e^{2x+1}+C,C\in{\mathbb{R}} .
  2. dxex+1\int\frac{dx}{e^x+1}. We make the change: z=exz=e^x. We point out that z>0z>0. We receive: dzz(z+1)=(1z1z+1)dz=lnzln(z+1)+C=xln(ex+1)+C,CR\int\frac{dz}{z(z+1)}=\int(\frac{1}{z}-\frac{1}{z+1})dz=ln\,z-ln(z+1)+C=x-ln(e^x+1)+C,C\in{\mathbb{R}}
  3. e2xex+1dx\int\frac{e^{2x}}{e^x+1}dx . We make the change z=exz=e^x and receive: zdzz+1=(11z+1)dz=zln(z+1)+C=exln(ex+1)+C,CR\int\frac{zdz}{z+1}=\int(1-\frac{1}{z+1})dz=z-ln(z+1)+C=e^x-ln(e^x+1)+C,C\in{\mathbb{R}}
  4. 4(102x2)dx=4e2x2ln2dx.\int 4(10^{2x^2})dx=\int4e^{2x^2ln2}dx. The good expression for this integral in terms of elementary functions is not known.
  5. x2x3+5dx=13(x3+5)d(x3+5)=3ln(x3+5)+C,CR.\int\frac{x^2}{x^3+5}dx=\int\frac{1}{3(x^3+5)}d(x^3+5)=3ln(x^3+5)+C,C\in{\mathbb{R}}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS