Determine the angle between the following two vectors.
|𝑔| = (1,2,−3)
|h| = (0,−3,4)
Let θ\thetaθ be the angle between the vectors g⃗\vec{g}g and h⃗\vec{h}h .
Using the transformed dot product equation,
θ=cos−1(g⃗⋅h⃗∣g⃗∣∣h⃗∣)\theta = \cos^{-1} \left( \frac{ \vec{g}\cdot \vec{h}}{|\vec{g}| |\vec{h}| } \right)θ=cos−1(∣g∣∣h∣g⋅h)
where
g⃗⋅h⃗=(1)(0)+(2)(−3)+(−3)(4)=−18\vec{g}\cdot \vec{h} = (1)(0) + (2)(-3)+(-3)(4)=-18g⋅h=(1)(0)+(2)(−3)+(−3)(4)=−18 (the dot product of g⃗\vec{g}g and h⃗\vec{h}h )
and
∣g⃗∣=(1)2+(2)2+(−3)2=14|\vec{g}| = \sqrt{(1)^2+(2)^2+(-3)^2} = \sqrt{14}∣g∣=(1)2+(2)2+(−3)2=14 (magnitude of vector g⃗\vec{g}g )
∣h⃗∣=(0)2+(−3)2+(4)2=25=5|\vec{h}| = \sqrt{(0)^2+(-3)^2+(4)^2} = \sqrt{25}=5∣h∣=(0)2+(−3)2+(4)2=25=5 (magnitude of vector h⃗\vec{h}h )
Therefore,
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments