Determine the angle between the following two vectors.
|𝑔| = (1,2,−3)
|h| = (0,−3,4)
Let "\\theta" be the angle between the vectors "\\vec{g}" and "\\vec{h}" .
Using the transformed dot product equation,
"\\theta = \\cos^{-1} \\left( \\frac{ \\vec{g}\\cdot \\vec{h}}{|\\vec{g}| |\\vec{h}| } \\right)"
where
"\\vec{g}\\cdot \\vec{h} = (1)(0) + (2)(-3)+(-3)(4)=-18" (the dot product of "\\vec{g}" and "\\vec{h}" )
and
"|\\vec{g}| = \\sqrt{(1)^2+(2)^2+(-3)^2} = \\sqrt{14}" (magnitude of vector "\\vec{g}" )
"|\\vec{h}| = \\sqrt{(0)^2+(-3)^2+(4)^2} = \\sqrt{25}=5" (magnitude of vector "\\vec{h}" )
Therefore,
"\\theta = \\cos^{-1} \\left( -0.9621 \\right)"
"\\theta = 164.18^{0}"
Comments
Leave a comment